Что такое мышьяк? Определение, формула, свойства. Периодическая система элементов менделеева - мышьяк Нахождение в природных условиях

Мышьяк (лат. arsenicum), as, химический элемент v группы периодической системы Менделеева, атомный номер 33, атомная масса 74,9216; кристаллы серо-стального цвета. Элемент состоит из одного устойчивого изотопа 75 as.

Историческая справка. Природные соединения М. с серой (аурипигмент as 2 s 3 , реальгар as 4 s 4) были известны народам древнего мира, которые применяли эти минералы как лекарства и краски. Был известен и продукт обжигания сульфидов М. - оксид М. (iii) as 2 o 3 («белый М.»). Название arsenik o n встречается уже у Аристотеля; оно произведено от греч. a rsen - сильный, мужественный и служило для обозначения соединений М. (по их сильному действию на организм). Русское название, как полагают, произошло от «мышь» (по применению препаратов М. для истребления мышей и крыс). Получение М. в свободном состоянии приписывают Альберту Великому (около 1250). В 1789 А. Лавуазье включил М. в список химических элементов.

Распространение в природе. Среднее содержание М. в земной коре (кларк) 1,7 · 10 -4 % (по массе), в таких количествах он присутствует в большинстве изверженных пород. Поскольку соединения М. летучи при высоких температурах, элемент не накапливается при магматических процессах; он концентрируется, осаждаясь из горячих глубинных вод (вместе с s, se, sb, fe, co, ni, cu и др. элементами). При извержении вулканов М. в виде своих летучих соединений попадает в атмосферу. Так как М. многовалентен, на его миграцию оказывает большое влияние окислительно-восстановительная среда. В окислительных условиях земной поверхности образуются арсенаты (as 5+) и арсениты (as 3+). Это редкие минералы, встречающиеся только на участках месторождений М. Ещё реже встречается самородный М. и минералы as 2+ . Из многочисленных минералов М. (около 180) основное промышленное значение имеет лишь арсенопирит feass.

Малые количества М. необходимы для жизни. Однако в районах месторождении М. и деятельности молодых вулканов почвы местами содержат до 1% М., с чем связаны болезни скота, гибель растительности. Накопление М. особенно характерно для ландшафтов степей и пустынь, в почвах которых М. малоподвижен. Во влажном климате М. легко вымывается из почв.

В живом веществе в среднем 3 · 10 -5 % М., в реках 3 · 10 -7 %. М., приносимый реками в океан, сравнительно быстро осаждается. В морской воде лишь 1 · 10 -7 % М., но зато в глинах и сланцах 6,6 · 10 -4 %. Осадочные железные руды, железомарганцевые конкреции часто обогащены М.

Физические и химические свойства. М. имеет несколько аллотропических модификаций. При обычных условиях наиболее устойчив так называемый металлический, или серый, М. (a -as) - серо-стальная хрупкая кристаллическая масса; в свежем изломе имеет металлический блеск, на воздухе быстро тускнеет, т. к. покрывается тонкой плёнкой as 2 o 3 . Кристаллическая решётка серого М. ромбоэдрическая (а = 4,123 a , угол a = 54°10", х = 0,226), слоистая. Плотность 5,72 г/см 3 (при 20°c), удельное электрическое сопротивление 35 · 10 -8 ом ? м , или 35 · 10 -6 ом ? см , температурный коэффициент электросопротивления 3,9 · 10 -3 (0°-100 °c), твёрдость по Бринеллю 1470 Мн/м 2 , или 147 кгс/мм 2 (3-4 по Моосу); М. диамагнитен. Под атмосферным давлением М. возгоняется при 615 °c не плавясь, т. к. тройная точка a -as лежит при 816 °c и давлении 36 ат . Пар М. состоит до 800 °c из молекул as 4 , выше 1700 °c - только из as 2 . При конденсации пара М. на поверхности, охлаждаемой жидким воздухом, образуется жёлтый М. - прозрачные, мягкие как воск кристаллы, плотностью 1,97 г/см 3 , похожие по свойствам на белый фосфор . При действии света или при слабом нагревании он переходит в серый М. Известны также стекловидно-аморфные модификации: чёрный М. и бурый М., которые при нагревании выше 270°c превращаются в серый М.

Конфигурация внешних электронов атома М. 3 d 10 4 s 2 4 p 3 . В соединениях М. имеет степени окисления + 5, + 3 и – 3. Серый М. значительно менее активен химически, чем фосфор. При нагревании на воздухе выше 400°c М. горит, образуя as 2 o 3 . С галогенами М. соединяется непосредственно; при обычных условиях asf 5 - газ; asf 3 , ascl 3 , asbr 3 - бесцветные легко летучие жидкости; asi 3 и as 2 l 4 - красные кристаллы. При нагревании М. с серой получены сульфиды: оранжево-красный as 4 s 4 и лимонно-жёлтый as 2 s 3 . Бледно-жёлтый сульфид as 2 s 5 осаждается при пропускании h 2 s в охлаждаемый льдом раствор мышьяковой кислоты (или её солей) в дымящей соляной кислоте: 2h 3 aso 4 + 5h 2 s = as 2 s 5 + 8h 2 o; около 500°c он разлагается на as 2 s 3 и серу. Все сульфиды М. нерастворимы в воде и разбавленных кислотах. Сильные окислители (смеси hno 3 + hcl, hcl + kclo 3) переводят их в смесь h 3 aso 4 и h 2 so 4 . Сульфид as 2 s 3 легко растворяется в сульфидах и полисульфидах аммония и щелочных металлов, образуя соли кислот - тиомышьяковистой h 3 ass 3 и тиомышьяковой h 3 ass 4 . С кислородом М. даёт окислы: оксид М. (iii) as 2 o 3 - мышьяковистый ангидрид и оксид М. (v) as 2 o 5 - мышьяковый ангидрид. Первый из них образуется при действии кислорода на М. или его сульфиды, например 2as 2 s 3 + 9o 2 = 2as 2 o 3 + 6so 2 . Пары as 2 o 3 конденсируются в бесцветную стекловидную массу, которая с течением времени становится непрозрачной вследствие образования мелких кристаллов кубической сингонии, плотность 3,865 г/см 3 . Плотность пара отвечает формуле as 4 o 6: выше 1800°c пар состоит из as 2 o 3 . В 100 г воды растворяется 2,1 г as 2 o 3 (при 25°c). Оксид М. (iii) - соединение амфотерное, с преобладанием кислотных свойств. Известны соли (арсениты), отвечающие кислотам ортомышьяковистой h 3 aso 3 и метамышьяковистой haso 2 ; сами же кислоты не получены. В воде растворимы только арсениты щелочных металлов и аммония. as 2 o 3 и арсениты обычно бывают восстановителями (например, as 2 o 3 + 2i 2 + 5h 2 o = 4hi + 2h 3 aso 4), но могут быть и окислителями (например, as 2 o 3 + 3c = 2as + 3co).

Оксид М. (v) получают нагреванием мышьяковой кислоты h 3 aso 4 (около 200°c). Он бесцветен, около 500°c разлагается на as 2 o 3 и o 2 . Мышьяковую кислоту получают действием концентрированной hno 3 на as или as 2 o 3 . Соли мышьяковой кислоты (арсенаты) нерастворимы в воде, за исключением солей щелочных металлов и аммония. Известны соли, отвечающие кислотам ортомышьяковой h 3 aso 4 , метамышьяковой haso 3 , и пиромышьяковой h 4 as 2 o 7 ; последние две кислоты в свободном состоянии не получены. При сплавлении с металлами М. по большей части образует соединения (арсениды ).

Получение и применение . М. получают в промышленности нагреванием мышьякового колчедана:

feass = fes + as

или (реже) восстановлением as 2 o 3 углем. Оба процесса ведут в ретортах из огнеупорной глины, соединённых с приёмником для конденсации паров М. Мышьяковистый ангидрид получают окислительным обжигом мышьяковых руд или как побочный продукт обжига полиметаллических руд, почти всегда содержащих М. При окислительном обжиге образуются пары as 2 o 3 , которые конденсируются в уловительных камерах. Сырой as 2 o 3 очищают возгонкой при 500-600°c. Очищенный as 2 o 3 служит для производства М. и его препаратов.

Небольшие добавки М. (0,2-1,0% по массе) вводят в свинец, служащий для производства ружейной дроби (М. повышает поверхностное натяжение расплавленного свинца, благодаря чему дробь получает форму, близкую к сферической; М. несколько увеличивает твёрдость свинца). Как частичный заменитель сурьмы М. входит в состав некоторых баббитов и типографских сплавов.

Чистый М. не ядовит, но все его соединения, растворимые в воде или могущие перейти в раствор под действием желудочного сока, чрезвычайно ядовиты; особенно опасен мышьяковистый водород . Из применяемых на производстве соединений М. наиболее токсичен мышьяковистый ангидрид. Примесь М. содержат почти все сульфидные руды цветных металлов, а также железный (серный) колчедан. Поэтому при их окислительном обжиге, наряду с сернистым ангидридом so 2 , всегда образуется as 2 o 3 ; большая часть его конденсируется в дымовых каналах, но при отсутствии или малой эффективности очистных сооружений отходящие газы рудообжигательных печей увлекают заметные количества as 2 o 3 . Чистый М., хотя и не ядовит, но при хранении на воздухе всегда покрывается налётом ядовитого as 2 o 3 . При отсутствии должной вентиляции крайне опасно травление металлов (железа, цинка) техническими серной или соляной кислотами, содержащими примесь М., т. к. при этом образуется мышьяковистый водород.

С. А. Погодин.

М. в организме. В качестве микроэлемента М. повсеместно распространён в живой природе. Среднее содержание М. в почвах 4 · 10 -4 %, в золе растений - 3 · 10 -5 %. Содержание М. в морских организмах выше, чем в наземных (в рыбах 0,6-4,7 мг в 1 кг сырого вещества, накапливается в печени). Среднее содержание М. в теле человека 0,08-0,2 мг/кг . В крови М. концентрируется в эритроцитах, где он связывается с молекулой гемоглобина (причём в глобиновой фракции содержится его вдвое больше, чем в геме). Наибольшее количество его (на 1 г ткани) обнаруживается в почках и печени. Много М. содержится в лёгких и селезёнке, коже и волосах; сравнительно мало - в спинномозговой жидкости, головном мозге (главным образом гипофизе), половых железах и др. В тканях М. находится в основной белковой фракции, значительно меньше - в кислоторастворимой и лишь незначительная часть его обнаруживается в липидной фракции. М. участвует в окислительно-восстановительных реакциях: окислительном распаде сложных углеводов, брожении, гликолизе и т. п. Соединения М. применяют в биохимии как специфические ингибиторы ферментов для изучения реакций обмена веществ.

М. в медицине. Органические соединения М. (аминарсон, миарсенол, новарсенал, осарсол) применяют, главным образом, для лечения сифилиса и протозойных заболеваний. Неорганические препараты М. - натрия арсенит (мышьяковокислый натрий), калия арсенит (мышьяковистокислый калий), мышьяковистый ангидрид as 2 o 3 , назначают как общеукрепляющие и тонизирующие средства. При местном применении неорганические препараты М. могут вызывать некротизирующий эффект без предшествующего раздражения, отчего этот процесс протекает почти безболезненно; это свойство, которое наиболее выражено у as 2 o 3 , используют в стоматологии для разрушения пульпы зуба. Неорганические препараты М. применяют также для лечения псориаза.

Полученные искусственно радиоактивные изотопы М. 74 as (t 1 / 2 = 17,5 сут ) и 76 as (t 1 / 2 = 26,8 ч ) используют в диагностических и лечебных целях. С их помощью уточняют локализацию опухолей мозга и определяют степень радикальности их удаления. Радиоактивный М. используют иногда при болезнях крови и др.

Согласно рекомендациям Международной комиссии по защите от излучений, предельно допустимое содержание 76 as в организме 11 мккюри . По санитарным нормам, принятым в СССР, предельно допустимые концентрации 76 as в воде и открытых водоёмах 1 · 10 -7 кюри/л , в воздухе рабочих помещений 5 · 10 -11 кюри/л . Все препараты М. очень ядовиты. При остром отравлении ими наблюдаются сильные боли в животе, понос, поражение почек; возможны коллапс, судороги. При хроническом отравлении наиболее часты желудочно-кишечные расстройства, катары слизистых оболочек дыхательных путей (фарингит, ларингит, бронхит), поражения кожи (экзантема, меланоз, гиперкератоз), нарушения чувствительности; возможно развитие апластической анемии. При лечении отравлений препаратами М. наибольшее значение придают унитиолу.

Меры предупреждения производственных отравлений должны быть направлены прежде всего на механизацию, герметизацию и обеспыливание технологического процесса, на создание эффективной вентиляции и обеспечение рабочих средствами индивидуальной защиты от воздействия пыли. Необходимы регулярные медицинские осмотры работающих. Предварительные медицинские осмотры производят при приёме на работу, а для работающих - раз в полгода.

Лит.: Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963, с. 700-712; Погодин С. А., Мышьяк, в кн.: Краткая химическая энциклопедия, т. 3, М., 1964; Вредные вещества в промышленности, под общ. ред. Н. В. Лазарева, 6 изд., ч. 2, Л., 1971.

cкачать реферат

Мышьяк - минерал из класса самородных элементов, полуметалл, химическая формула As. Обычны примеси Sb, S, Fe, Ag, Ni; реже Bi и V. Содержание As в самородном мышьяке достигает 98%. Химический элемент 15-й группы (по устаревшей классификации - главной подгруппы пятой группы) четвёртого периода периодической системы; имеет атомный номер 33. Мышьяк (неочищенный мышьяк) представляет собой твердое вещество, извлекаемое из природных арсенопиритов. Он существует в двух основных формах: обыкновенный, так называемый «металлический» мышьяк, в виде блестящих кристаллов стального цвета, хрупких, не растворимых в воде и желтый мышьяк, кристаллический, довольно неустойчивый. Мышьяк используется в производстве дисульфида мышьяка, крупной дроби, твердой бронзы и различных других сплавов (олова, меди и т.п.)

Смотрите так же:

СТРУКТУРА

Кристаллическая структура мышьяка дитригонально-скаленоэдрическая симметрия. Сингония тригональная, в. с. L633L23PC. Кристаллы крайне редки, имеют ромбоэдрический или псевдокубический габитус.

Установлено несколько аллотропных модификаций мышьяка. В обычных условиях устойчив металлический, или серый мышьяк (альфа-мышьяк). Кристаллическая решетка серого мышьяка ромбоэдрическая, слоистая, с периодом а=4,123 А, угол а = 54° 10′. Плотность (при температуре 20° С) 5,72 г/см 3 ; температурный коэфф. линейного расширения 3,36 10 град; удельное электрическое сопротивление (температура 0° С) 35 10 -6 ом см; НВ = ж 147; коэфф. сжимаемости (при температуре 30° С) 4,5 х 10 -6 cm 2 /кг. Температура плавления альфа-мышьяка 816° С при давлении 36 атмосфер.

Под атм. давлением мышьяк возгоняется при температуре 615° С не плавясь. Теплота сублимации 102 кал/г. Пары мышьяка бесцветны, до т-ры 800° С состоят из молекул As 4 , от 800 до 1700° С - из смеси As 4 и As 2 , выше температуры 1700° С - только из As 2 . При быстрой конденсации паров мышьяк на поверхности, охлаждаемой жидким воздухом, образуется желтый мышьяк- прозрачные мягкие кристаллы кубической системы с плотностью 1,97 г/см 3 . Известны также другие метастабильные модификации мышьяка: бета-мышьяк - аморфная стеклообразная, гамма-мышьяк - желто-коричневая и дельта-мышьяк - коричневая аморфная с плотностями соответственно 4,73; 4,97 и 5,10 г/см 3 . Выше температуры 270° С эти модификации переходят в серый мышьяк.

СВОЙСТВА

Цвет на свежем изломе цинково-белый, оловянно-белый до светло-серого, быстро тускнеет за счет образования тёмно-серой побежалости; чёрный на выветрелой поверхности. Твёрдость по шкале Мооса 3 — 3,5. Плотность 5,63 — 5,8 г/см 3 . Хрупкий. Диагностируется по характерному запаху чеснока при ударе. Спайность совершенная по {0001} и менее совершенная по {0112}. Излом зернистый. Уд. вес 5,63-5,78. Черта серая, оловянно-белая. Блеск металлический, сильный (в свежем изломе), быстро тускнеет и становится матовым на окислившейся, почерневшей с течением времени поверхности. Является диамагнетиком.

МОРФОЛОГИЯ


Мышьяк обычно наблюдается в виде корок с натечной почковидной поверхностью, сталактитов, скорлуповатых образований, в изломе обнаруживающих кристаллически-зернистое строение. Самородный мышьяк довольно легко узнается по форме выделений, почерневшей поверхности, значительному удельному весу, сильному металлическому блеску в свежем изломе и совершенной спайности. Под паяльной трубкой улетучивается, не плавясь (при температуре около 360°), издавая характерный чесночный запах и образуя белый налет As 2 О 3 на угле. В жидкое состояние переходит лишь при повышенном внешнем давлении. В закрытой трубке образует зеркало мышьяка. При резком ударе молотком издает чесночный запах.

ПРОИСХОЖДЕНИЕ

Мышьяк встречается в гидротермальных месторождениях в виде метаколлоидных образований в пустотах, образуясь, очевидно, в последние моменты гидротермальной деятельности. В ассоциации с ним могут встречаться различные по составу мышьяковистые, сурьмянистые, реже сернистые соединения никеля, кобальта, серебра, свинца и др., а также нерудные минералы.

В литературе имеются указания на вторичное происхождение мышьяка в зонах выветривания месторождений мышьяковистых руд, что, вообще говоря, мало вероятно, если учесть, что в этих условиях он очень неустойчив и, быстро окисляясь, разлагается полностью. Черные корочки состоят из тонкой смеси мышьяка и арсенолита (As 2 О 3). В конце концов образуется чистый арсенолит.

В земной коре концентрация мышьяка невелика и составляет 1,5 промилле. Он встречается в почве и минералах и может попасть в воздух, воду и грунт благодаря ветровой и водной эрозии. Кроме того, элемент поступает в атмосферу из других источников. В результате извержения вулканов в воздух выделяется около 3 тыс. т мышьяка в год, микроорганизмы образуют 20 тыс. т летучего метиларсина в год, а в результате сжигания ископаемого топлива за тот же период выделяется 80 тыс. т.

На территории СССР самородный мышьяк был встречен в нескольких месторождениях. Из них отметим Садонское гидротермальное свинцово-цинковое месторождение, где он неоднократно наблюдался в виде почковидных масс на кристаллическом кальците с галенитом и сфалеритом. Крупные почкообразные скопления самородного мышьяка с концентрически-скорлуповатым строением были встречены на левом берегу р. Чикоя (Забайкалье). В парагенезисе с ним наблюдался лишь кальцит в виде оторочек на стенках тонких жил, секущих древние кристаллические сланцы. В виде обломков (рис. 76) мышьяк был найден также в районе ст. Джалинда, Амурской ж. д. и в других местах.

В ряде месторождений Саксонии (Фрейберг, Шнееберг, Аннаберг и др.) самородный мышьяк наблюдался в ассоциации с мышьяковистыми соединениями кобальта, никеля, серебра, самородным висмутом и др. Все эти и другие находки этого минерала практического значения не имеют.

ПРИМЕНЕНИЕ


Мышьяк используется для легирования сплавов свинца, идущих на приготовление дроби, так как при отливке дроби башенным способом капли сплава мышьяка со свинцом приобретают строго сферическую форму, и кроме того, прочность и твёрдость свинца существенно возрастают. Мышьяк особой чистоты (99,9999 %) используется для синтеза ряда полезных и важных полупроводниковых материалов - арсенидов (например, арсенида галлия) и других полупроводниковых материалов с кристаллической решёткой типа цинковой обманки.

Сульфидные соединения мышьяка - аурипигмент и реальгар - используются в живописи в качестве красок и в кожевенной отрасли промышленности в качестве средств для удаления волос с кожи. В пиротехнике реальгар употребляется для получения «греческого», или «индийского», огня, возникающего при горении смеси реальгара с серой и селитрой (при горении образует ярко-белое пламя).
Некоторые элементоорганические соединения мышьяка являются боевыми отравляющими веществами, например, люизит.

В начале XX века некоторые производные какодила, например, сальварсан, применяли для лечения сифилиса, со временем эти препараты были вытеснены из медицинского применения для лечения сифилиса другими, менее токсичными и более эффективными, фармацевтическими препаратами, не содержащими мышьяк.

Многие из мышьяковых соединений в очень малых дозах применяются в качестве препаратов для борьбы с малокровием и рядом других тяжелых заболеваний, так как оказывают клинически заметное стимулирующее влияние на ряд специфических функций организма, в частности, на кроветворение. Из неорганических соединений мышьяка мышьяковистый ангидрид может применяться в медицине для приготовления пилюль и в зубоврачебной практике в виде пасты как некротизирующее лекарственное средство. Этот препарат в обиходе и жаргонно называли «мышьяк» и применяли в стоматологии для локального омертвления зубного нерва. В настоящее время препараты мышьяка редко применяются в зубоврачебной практике из-за их токсичности. Сейчас разработаны и применяются другие методы безболезненного омертвления нерва зуба под местной анестезией.

Мышьяк (англ. Arsenic) — As

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/B.01-10
Nickel-Strunz (10-ое издание) 1.CA.05
Dana (7-ое издание) 1.3.1.1
Dana (8-ое издание) 1.3.1.1
Hey’s CIM Ref. 1.33

Мышьяк - химический элемент группы азота (группа 15 таблицы Менделеева). Это серое с металлическим блеском хрупкое вещество (α-мышьяк) с ромбоэдрической кристаллической решеткой. При нагревании до 600°C As сублимирует. При охлаждении паров возникает новая модификация — желтый мышьяк. Выше 270°C все формы As переходят в черный мышьяк.

История открытия

О том, что такое мышьяк, было известно задолго до признания его химическим элементом. В IV в. до н. э. Аристотель упоминал о веществе под названием «сандарак», которое, как теперь полагают, было реальгаром, или сульфидом мышьяка. А в I веке н. э. писатели Плиний старший и Педаний Диоскорид описывали аурипигмент - краситель As 2 S 3 . В XI в. н. э. различались три разновидности «мышьяка»: белый (As 4 O 6), желтый (As 2 S 3) и красный (As 4 S 4). Сам элемент, вероятно, впервые был выделен в XIII веке Альбертом Великим, который отметил появление металлоподобного вещества, когда арсеникум, другое название As 2 S 3 , был нагрет с мылом. Но уверенности в том, что этот ученый-естествоиспытатель получил чистый мышьяк, нет. Первое подлинное свидетельство о выделении чистого датировано 1649 годом. Немецкий фармацевт Иоганн Шредер приготовил мышьяк, нагревая его оксид в присутствии угля. Позже Никола Лемери, французский врач и химик, наблюдал образование этого химического элемента при нагревании смеси его оксида, мыла и поташа. К началу XVIII века мышьяк уже был известен и как уникальный полуметалл.

Распространенность

В земной коре концентрация мышьяка невелика и составляет 1,5 промилле. Он встречается в почве и минералах и может попасть в воздух, воду и грунт благодаря ветровой и водной эрозии. Кроме того, элемент поступает в атмосферу из других источников. В результате извержения вулканов в воздух выделяется около 3 тыс. т мышьяка в год, микроорганизмы образуют 20 тыс. т летучего метиларсина в год, а в результате сжигания ископаемого топлива за тот же период выделяется 80 тыс. т.

Несмотря на то что As - смертельный яд, он является важной составляющей питания некоторых животных и, возможно, человека, хотя необходимая доза не превышает 0,01 мг/сутки.

Мышьяк крайне трудно перевести в водорастворимое или летучее состояние. Тот факт, что он довольно мобилен, означает, что большие концентрации вещества в каком-то одном месте появиться не могут. С одной стороны, это хорошо, но с другой - легкость, с которой он распространяется, является причиной того, что загрязнение мышьяком становится все большей проблемой. Из-за деятельности человека, в основном за счет добычи и плавки, обычно немобильный химический элемент мигрирует, и сейчас его можно найти не только в местах его естественной концентрации.

Количество мышьяка в земной коре составляет около 5 г на тонну. В космосе его концентрация оценивается как 4 атома на миллион атомов кремния. Этот элемент широко распространен. Небольшое его количество присутствует в самородном состоянии. Как правило, образования мышьяка чистотой 90-98% встречаются вместе с такими металлами, как сурьма и серебро. Большая его часть, однако, входит в состав более чем 150 различных минералов - сульфидов, арсенидов, сульфоарсенидов и арсенитов. Арсенопирит FeAsS является одним из самых распространенных As-содержащих минералов. Другие распространенные соединения мышьяка - минералы реальгар As 4 S 4, аурипигмент As 2 S 3, леллингит FeAs 2 и энаргит Cu 3 AsS 4 . Также часто встречается оксид мышьяка. Большая часть этого вещества является побочным продуктом выплавки медных, свинцовых, кобальтовых и золотых руд.

В природе существует только один стабильный изотоп мышьяка - 75 As. Среди искусственных радиоактивных изотопов выделяется 76 As c периодом полураспада 26,4 ч. Мышьяк-72, -74 и -76 используются в медицинской диагностике.

Промышленное производство и применение

Металлический мышьяк получают при нагреве арсенопирита до 650-700 °C без доступа воздуха. Если же арсенопирит и другие металлические руды нагревать с кислородом, то As легко вступает с ним в соединение, образуя легко возгоняемый As 4 O 6 , также известный как «белый мышьяк». Пары оксида собирают и конденсируют, и позже очищают повторной возгонкой. Большая часть As производится путем его восстановления углеродом из белого мышьяка, полученного таким образом.

Мировое потребление металлического мышьяка является относительно небольшим - всего несколько сотен тонн в год. Большая часть того, что потребляется, поступает из Швеции. Он используется в металлургии из-за его металлоидных свойств. Около 1% мышьяка применяется в производстве свинцовой дроби, так как он улучшает округлость расплавленной капли. Свойства подшипниковых сплавов на основе свинца улучшаются как по тепловым, так и по механическим характеристикам, когда они содержат около 3% мышьяка. Наличие малого количества этого химического элемента в свинцовых сплавах закаляет их для использования в аккумуляторных батареях и кабельной броне. Небольшие примеси мышьяка повышают коррозионную стойкость и тепловые свойства меди и латуни. В чистом виде химический элементарный As используется для нанесения бронзового покрытия и в пиротехнике. Высокоочищенный мышьяк находит применение в полупроводниковой технике, где он используется с кремнием и германием, а также в форме арсенида галлия (GaAs) в диодах, лазерах и транзисторах.

Соединения As

Так как валентность мышьяка равна 3 и 5, и он имеет ряд степеней окисления от -3 до +5, элемент может образовывать различные виды соединений. Наиболее важное коммерческое значение имеют его формами которых являются As 4 O 6 и As 2 O 5 . Мышьяковистый оксид, широко известный как белый мышьяк, - это побочный продукт обжига руд меди, свинца и некоторых других металлов, а также арсенопирита и сульфидных руд. Он является исходным материалом для большинства других соединений. Кроме того, он используется в пестицидах, служит обесцвечивающим веществом в производстве стекла и консервантом для кож. Пятиокись мышьяка образуется при воздействии окислителя (например, азотной кислоты) на белый мышьяк. Он является основным ингредиентом инсектицидов, гербицидов и клея для металла.

Арсин (AsH 3), бесцветный ядовитый газ, состоящий из мышьяка и водорода, - это еще одно известное вещество. Вещество, называемое также мышьяковистым водородом, получают путем гидролиза металлических арсенидов и восстановления металлов из соединений мышьяка в растворах кислот. Он нашел применение как легирующая добавка в полупроводниках и боевой отравляющий газ. В сельском хозяйстве большое значение имеют мышьяковая кислота (H 3 AsO 4), арсенат свинца (PbHAsO 4) и арсената кальция [Са 3 (AsO 4) 2 ], которые используются для стерилизации почвы и борьбы с вредителями.

Мышьяк - химический элемент, образующий множество органических соединений. Какодин (СН 3) 2 As−As(СН 3) 2 , например, используется при подготовке широко используемого десиканта (осушающего средства) - какодиловой кислоты. Сложные органические соединения элемента применяются в лечении некоторых заболеваний, например, амебной дизентерии, вызванной микроорганизмами.

Физические свойства

Что такое мышьяк с точки зрения его физических свойств? В наиболее стабильном состоянии он представляет собой хрупкое твердое вещество стального серого цвета с низкой тепловой и электрической проводимостью. Хотя некоторые формы As являются металлоподобными, отнесение его к неметаллам - это более точная характеристика мышьяка. Есть и другие виды мышьяка, но они не очень хорошо изучены, особенно желтая метастабильная форма, состоящая из молекул As 4 , подобно белому фосфору Р 4 . Мышьяк возгоняется при температуре 613 °C, и в виде пара он существует как молекулы As 4 , которые не диссоциируют до температуры около 800 °C. Полная диссоциация на молекулы As 2 происходит при 1700 °С.

Строение атома и способность образовывать связи

Электронная формула мышьяка - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 - напоминает азот и фосфор в том, что во внешней оболочке есть пять электронов, но он отличается от них наличием 18 электронов в предпоследней оболочке вместо двух или восьми. Добавление 10 положительных зарядов в ядре во время заполнения пяти 3d-орбиталей часто вызывает общее уменьшение электронного облака и увеличение электроотрицательности элементов. Мышьяк в таблице Менделеева можно сравнить с другими группами, которые наглядно демонстрируют эту закономерность. Например, общепризнанно, что цинк является более электроотрицательным, чем магний, а галлий - чем алюминий. Однако в последующих группах эта разница уменьшается, и многие не согласны с тем, что германий электроотрицательнее кремния, несмотря на обилие химических доказательств. Подобный переход от 8- к 18-элементной оболочке от фосфора к мышьяку может увеличить электроотрицательность, но это остается спорным.

Сходство внешней оболочки As и P говорит о том, они могут образовывать 3 на атом при наличии дополнительной несвязанной электронной пары. Степень окисления должна, следовательно, быть +3 или -3, в зависимости от относительной взаимной электроотрицательности. Строение мышьяка также говорит о возможности использования внешней d-орбитали для расширения октета, что позволяет элементу образовывать 5 связей. Она реализуется только при реакции с фтором. Наличие свободной электронной пары для образования комплексных соединений (через донорство электронов) в атоме As проявляется гораздо меньше, чем у фосфора и азота.

Мышьяк стабилен в сухом воздухе, но во влажном покрывается черным оксидом. Его пары легко сгорают, образуя As 2 O 3 . Что такое мышьяк в свободном состоянии? Он практически не подвержен воздействию воды, щелочей и неокисляющих кислот, но окисляется азотной кислотой до состояния +5. С мышьяком реагируют галогены, сера, а многие металлы образуют арсениды.

Аналитическая химия

Вещество мышьяк качественно можно обнаружить в виде желтого аурипигмента, выпадающего в осадок под действием 25% раствора соляной кислоты. Следы As, как правило, определяются путем его преобразования в арсин, который можно обнаружить с помощью теста Марша. Арсин термически разлагается, образуя черное зеркало из мышьяка внутри узкой трубки. По методу Гутцайта пробник, пропитанный под действием арсина темнеет из-за выделения ртути.

Токсикологическая характеристика мышьяка

Токсичность элемента и его производных широко изменяется в значительных пределах, от чрезвычайно ядовитого арсина и его органических производных до просто As, который относительно инертен. О том, что такое мышьяк, говорит применение его органических соединений в качестве боевых отравляющих веществ (люизит), везиканта и дефолианта («Агент блю» на основе водной смеси 5% какодиловой кислоты 26% ее натриевой соли).

В целом производные данного химического элемента раздражают кожу и вызывают дерматит. Также рекомендуется защита от вдыхания мышьяк-содержащей пыли, но большая часть отравлений происходит при его употреблении внутрь. Предельно допустимая концентрация As в пыли за восьмичасовой рабочий день составляет 0,5 мг/м 3 . Для арсина доза снижается до 0,05 части на миллион. Помимо использования соединений данного химического элемента в качестве гербицидов и пестицидов, применение мышьяка в фармакологии позволило получить сальварсан - первый успешный препарат против сифилиса.

Воздействие на здоровье

Мышьяк является одним из наиболее токсичных элементов. Неорганические соединения данного химического вещества в естественных условиях встречаются в небольших количествах. Люди могут подвергаться воздействию мышьяка через пищу, воду и воздух. Экспозиция может также произойти при контакте кожи с зараженной почвой или водой.

Воздействию вещества также подвержены люди, которые с ним работают, живут в домах, построенных из обработанной им древесины, и на землях сельскохозяйственного назначения, где в прошлом применялись пестициды.

Неорганический мышьяк может вызывать различные последствия для здоровья человека, такие как раздражение желудка и кишечника, снижение производства красных и белых клеток крови, изменение кожи и раздражение легких. Предполагается, что поглощение значительного количества этого вещества может увеличить шансы развития рака, особенно рака кожи, легких, печени и лимфатической системы.

Очень высокие концентрации неорганического мышьяка являются причиной бесплодия и выкидышей у женщин, дерматитов, снижения сопротивляемости организма инфекциям, проблем с сердцем и повреждений мозга. Кроме того, этот химический элемент способен повредить ДНК.

Смертельная доза белого мышьяка равна 100 мг.

Органические соединения элемента ни рака, ни повреждений генетического кода не вызывают, но высокие дозы могут нанести вред здоровью человека, например вызвать нервные расстройства или боли в животе.

Свойства As

Основные химико-физические свойства мышьяка следующие:

  • Атомное число - 33.
  • Атомный вес - 74,9216.
  • Температура плавления серой формы - 814 °C при давлении 36 атмосфер.
  • Плотность серой формы - 5,73 г/см 3 при 14 °C.
  • Плотность желтой формы - 2,03 г/см 3 при 18 °C.
  • Электронная формула мышьяка - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 .
  • Состояния окисления - -3, +3, +5.
  • Валентность мышьяка - 3, 5.

Мышьяк - классический яд средневековых и современных отравителей
и лекарство в современной спортивной и реабилитационной медицине
Токсические и ядовитые камни и минералы

Мышьяк (лат. Arsenicum), As, химический элемент V группы периодической системы Менделеева, атомный номер 33, атомная масса 74,9216; кристаллы серо-стального цвета. Элемент состоит из одного устойчивого изотопа 75 As. Ядовитый в любом виде, лекарство.

Историческая справка.

Природные соединения мышьяка с серой (аурипигмент As 2 S 3 , реальгар As 4 S 4) были известны народам древнего мира, которые применяли эти минералы как лекарства и краски. Был известен и продукт обжигания сульфидов мышьяка - оксид мышьяка (III) As 2 O 3 ("белый мышьяк").

Название arsenikon встречается уже в начале н.э.; оно произведено от греческого arsen - сильный, мужественный и служило для обозначения соединений мышьяка (по их действию на организм). Русское название, как полагают, произошло от "мышь" ("смерть" - по применению препаратов мышьяка для убийства яков, а также истребления мышей и крыс). Химическое получение мышьяка в свободном состоянии приписывают 1250 году н.э. В 1789 году А. Лавуазье включил мышьяк в список химических элементов.

Мышьяк. Белореченское м-ние, Сев. Кавказ, Россия. ~10x7 см. Фото: А.А. Евсеев.

Распространение мышьяка в природе.

Среднее содержание мышьяк в земной коре (кларк) 1,7*10 -4 % (по массе), в таких количествах он присутствует в большинстве изверженных пород. Поскольку соединения мышьяка летучи при высоких температурах (сухая вулканическая возгонка на батолитах), элемент возгоняется в амтосферу и воздух в виде металлических паров (миражи – воздух внизу рябит) не накапливается при возгоночных по трещинам и трубкам магматических лавовых процессах; он концентрируется, осаждаясь из паров и горячих глубинных вод на катализаторах кристаллообразования – металлическом железе (вместе с S, Se, Sb, Fe, Co, Ni, Cu и другими элементами).

При извержении вулканов (при сухой возгонке мышьяка) мышьяк в виде своих летучих соединений попадает в атмосферу. Так как мышьяк многовалентен, на его миграцию оказывает влияние окислительно-восстановительная среда. В окислительных условиях земной поверхности образуются арсенаты (As 5+) и арсениты (As 3+).

Это редкие минералы, встречающиеся на участках месторождений мышьяка. Еще реже встречается самородный мышьяк и минералы As 2+ . Из минералов и соединений мышьяка (около 180) промышленное значение имеет арсенопирит FeAsS (атом железа – центр формирования пирита, формула стартового "однокристалла" - Fe + (As + S)).


Арсенопиритовая жила. Трифоновская шх., Кочкарское м-ние (Au), Пласт, Ю. Урал, Россия. Мышьяки. Фото: А.А. Евсеев.

Малые количества мышьяка необходимы для жизни. Однако в районах месторождений мышьяка и деятельности молодых вулканов почвы местами содержат до 1% мышьяка, с чем связаны болезни скота, гибель растительности. Накопление мышьяка особенно характерно для ландшафтов степей и пустынь, в почвах которых мышьяк малоподвижен. Во влажном климате и при поливе растений и почв мышьяк вымывается из почв.

В живом веществе в среднем 3·10 -5 % мышьяка, в реках 3·10 -7 %. Мышьяк, приносимый реками в океан, сравнительно быстро осаждается. В морской воде 1*10 -7 % мышьяка (там много золота, которое его вытесняет), но зато в глинах и сланцах мышьяка (по берегам рек и водоемов, в глинистых черных формированиях и по краям карьеров) - 6,6*10 -4 %. Осадочные железные руды, железомарганцевые и иные железные конкреции часто обогащены мышьяком.

Физические свойства мышьяка.

Мышьяк имеет несколько аллотропических модификаций. При обычных условиях наиболее устойчив так называемых металлический, или серый, мышьяк (α-As) - серостальная хрупкая кристаллическая маса (по свойствам – как пирит, золотая обманка, железный колчедан); на свежем изломе имеет металлический блеск, на воздухе быстро тускнеет, так как покрывается тонкой пленкой As 2 O 3 .

Мышьяк редко именуется серебряная обманка – дело о Приказчиках царя А.М. Романова в середине XVII в., "серебришко", не ковкое, бывает в порошке, можно размолоть - яд для Царя Всея Руси. Самый знаменитый Испанский скандал в таверне отравителей у мельницы "Дон Кихот" по дороге в г. Альмаден, Испания, где на Европейском континенте добывают красную киноварь (скандалы о продажах девственников Краснодарского Края РФ, пос. Новый, кристаллическая красная киноварь, не хотят работать).


Арсенопирит. Друза призматических кристаллов со сферолитами кальцита. Фрайберг, Саксония, Германия. Фото: А.А. Евсеев.

Кристаллическая решетка серого мышьяка ромбоэдрическая (а = 4,123Å, угол α = 54 o 10", х = 0,226), слоистая. Плотность 5,72 г/см 3 (при 20 o C), удельное электрическое сопротивление 35*10 -8 ом*м, или 35*10 -6 ом*см, температурный коэффициент электросопротивления 3,9·10 -3 (0 o -100 o C), твердость по Бринеллю 1470 Мн/м 2 , или 147 кгс/мм 2 (3-4 по Moocy); мышьяк диамагнитен.

Под атмосферным давлением мышьяк возгоняется при 615 o C не плавясь, так как тройная точка α-As лежит при 816 o C и давлении 36 aт.

Пар мышьяка состоит до 800 o C из молекул As 4 , выше 1700 o C - только из As 2 . При конденсации пара мышьяка на поверхности, охлаждаемой жидким воздухом, образуется желтый мышьяк - прозрачные, мягкие как воск кристаллы, плотностью 1,97 г/см 3 , похожие по свойствам на белый фосфор.

При действии света или при слабом нагревании он переходит в серый мышьяк. Известны стекловидно-аморфные модификации: черный мышьяк и бурый мышьяк, которые при нагревании выше 270 o C превращаются в серый мышьяк

Химические свойства мышьяка.

Конфигурация внешних электронов атома мышьяка 3d 10 4s 2 4p 3 . B соединениях мышьяк имеет степени окисления +5, +3 и -3. Серый мышьяк менее активен химически, чем фосфор. При нагревании на воздухе выше 400 o C мышьяк горит, образуя As 2 O 3 .

С галогенами мышьяк соединяется непосредственно; при обычных условиях AsF 5 - газ; AsF 3 , AsCl 3 , AsBr 3 - бесцветные летучие жидкости; AsI 3 и As 2 I 4 - красные кристаллы. При нагревании мышьяка с серой получены сульфиды: оранжево-красный As 4 S 4 и лимонно-желтый As 2 S 3 .

Бледно-желтый серебристый сульфид As 2 S 5 (арсенопирит ) осаждается при пропускании H 2 S в охлаждаемый льдом раствор мышьяковой кислоты (или ее солей) в дымящей соляной кислоте: 2H 3 AsO 4 + 5H 2 S = As 2 S 5 + 8H 2 O; около 500 o C он разлагается на As 2 S 3 и серу.

Все сульфиды мышьяка нерастворимы в воде и разбавленных кислотах. Сильные окислители (смеси HNO 3 + HCl, HCl + KClO 3) переводят их в смесь H 3 AsO 4 и H 2 SO 4 .

Сульфид As 2 S 3 легко растворяется в сульфидах и полисульфидах аммония и щелочных металлов, образуя соли кислот - тиомышьяковистой H 3 AsS 3 и тиомышьяковой H 3 AsS 4 .

С кислородом мышьяк дает оксиды: оксид мышьяка (III) As 2 O 3 - мышьяковистый ангидрид и оксид мышьяка (V) As 2 O 5 - мышьяковый ангидрид. Первый из них образуется при действии кислорода на мышьяк или его сульфиды, например 2As 2 S 3 + 9O 2 = 2As 2 O 3 + 6SO 2 .

Пары As 2 O 3 конденсируются в бесцветную стекловидную массу, которая с течением времени становится непрозрачной вследствие образования мелких кристаллов кубической сингонии, плотность 3,865 г/см 3 . Плотность пара отвечает формуле As 4 O 6 ; выше 1800 o C пар состоит из As 2 O 3 .

В 100 г воды растворяется 2,1 г As 2 O 3 (при 25 o C). Оксид мышьяк (III) - соединение амфотер-ное, с преобладанием кислотных свойств. Известны соли (арсениты), отвечающие кислотам ортомышьяковистой H 3 AsO 3 и метамышьяковистой HAsO 2 ; сами же кислоты не получены. В воде растворимы только арсениты щелочных металлов и аммония.

As 2 O 3 и арсениты обычно бывают восстановителями (например, As 2 O 3 + 2I 2 + 5H 2 O = 4HI + 2H 3 AsO 4), но могут быть и окислителями (например, As 2 O 3 + 3C = 2As + ЗСО).

Оксид мышьяка (V) получают нагреванием мышьяковой кислоты H 3 AsO 4 (около 200 o C). Он бесцветен, около 500 o C разлагается на As 2 O 3 и O 2 . Мышьяковую кислоту получают действием концентрированной HNO 3 на As или As 2 O 3 .

Соли мышьяковой кислоты (арсенаты) нерастворимы в воде, за исключением солей щелочных металлов и аммония. Известны соли, отвечающие кислотам ортомышьяковой H 3 AsO 4 , метамышьяковой HAsO 3 и пиромышьяковой H 4 As 2 O 7 ; последние две кислоты в свободном состоянии не получены. При сплавлении с металлами мышьяк по большей части образует соединения (арсениды).

Получение мышьяка.

Мышьяк получают в промышленности нагреванием мышьякового колчедана:

FeAsS = FeS + As

или (реже) восстановлением As 2 O 3 углем. Оба процесса ведут в ретортах из огнеупорной глины, соединенных с приемником для конденсации паров мышьяка.

Мышьяковистый ангидрид получают окислительным обжигом мышьяковых руд или как побочный продукт обжига полиметаллических руд, почти всегда содержащих мышьяк. При окислительном обжиге образуются пары As 2 O 3 , которые конденсируются в уловительных камерах.

Сырой As 2 O 3 очищают возгонкой при 500-600 o C. Очищенный As 2 O 3 служит для производства мышьяка и его препаратов.

Применение мышьяка.

Небольшие добавки мышьяка (0,2-1,0% по массе) вводят в свинец, служащий для производства ружейной дроби (мышьяк повышает поверхностное натяжение расплавленного свинца, благодаря чему дробь получает форму, близкую к сферической; мышьяк несколько увеличивает твердость свинца). Как частичный заменитель сурьмы мышьяк входит в состав некоторых баббитов и типографских сплавов.

Чистый мышьяк не ядовит, но все его соединения, растворимые в воде или могущие перейти в раствор под действием желудочного сока, чрезвычайно ядовиты; особенно опасен мышьяковистый водород. Из применяемых на производстве соединений мышьяка наиболее токсичен мышьяковистый ангидрид.

Примесь мышьяка содержат почти все сульфидные руды цветных металлов, а также железный (серный) колчедан. Поэтому при их окислительном обжиге, наряду с сернистым ангидридом SO 2 , всегда образуется As 2 O 3 ; большая часть его конденсируется в дымовых каналах, но при отсутствии или малой эффективности очистных сооружений отходящие газы рудообжигательных печей увлекают заметные количества As 2 O 3 .

Чистый мышьяк, хотя и не ядовит, но при хранении на воздухе всегда покрывается налетом ядовитого As 2 O 3 . При отсутствии правильно выполненной вентиляции крайне опасно травление металлов (железа, цинка) техническими серной или соляной кислотами, содержащими примесь мышьяка, так как при этом образуется мышьяковистый водород.

Мышьяк в организме.

В качестве микроэлемента мышьяк повсеместно распространен в живой природе. Среднее содержание мышьяка в почвах 4*10 -4 %, в золе растений - 3*10 -5 %. Содержание мышьяка в морских организмах выше, чем в наземных (в рыбах 0,6-4,7 мг в 1 кг сырого вещества, накапливается в печени).

Наибольшее количество его (на 1 г ткани) обнаруживается в почках и печени (при приеме в пищу – в мозгах не накапливается). Много мышьяка содержится в легких и селезенке, коже и волосах; сравнительно мало - в спинномозговой жидкости, головном мозге (главном образом - в гипофизе), половых железах и других.

В тканях мышьяк находится в основной белковой фракции ("камень культуристов и спортсменов"), значительно меньше - в кислоторастворимой и лишь незначительная часть его обнаруживается в липидной фракции. Им лечат прогрессирующую мышечную дистрофию – в мозге и костях не накапливается (допинг спорта, лечат заложникво и узников конлагерей типа "Освенцем" в Польше, ЕС, 1941-1944 гг.).

Мышьяк участвует в окислительно-восстановительных реакциях: окислительном распаде сложных биологических углеводов и сахаров, брожении, гликолизе и т.п. Улучшает умственные способности (содейсвует процессу расщепления сахаров в мозге). Соединения мышьяка применяют в биохимии как специфические ингибиторы ферментов для изучения реакций обмена веществ. Содействует распаду биологических тканей (ускоряет). Активно применяется в стоматологии и онкологии - по ликвидации быстро растущих и рано стареющих раковых клеток и опухолей.

Смесь (твердый сульфидный сплав) таллия, мышьяка и свинца: Гутчинсонит (Хатчинсонит)

Формула минерала (Pb, Tl)S` Ag2S * 5 As2 S5 - сложная сульфидная и адсенидная твердосплавная соль. Ромб. Кристаллы призматические до игольчатых. Спайность совершенная по {010}. Агрегаты радиальноигольчатые, зернистые. Твердость 1,5-2. Удельный вес 4,6. Красный. Блеск алмазный. В гидротермальных месторождениях с доломитом, с сульфидами и арсенидами Zn, Fe, As и сульфоарсенидами. Результат сухой серной и мышьяковистой возгонки магмы через кальдеры и открытые жерла вулканов, а также сухой возгонки через трещины в глубинных магматических плутонитах из раскаленной магмы Земли. Содержит серебро. Входит в число десяти очень опасных для здоровья человека и животных и канцерогенных камней и минералов, кристаллизующихся в современных условиях среди других горных пород в виде вредной, опасной для здоровья (при самовольном обращении) и обманчивой рудной красоты. На фото - хатчинсонит с аурипигментом.

Ядовитые минералы. Гутчинсонит - назван по фамилии минералога Hutchinson из Кембриджского университета и по виду напоминает свинец (его могут использовать для защиты от радиации). Открыт в 1861 году. Смертельно опасная смесь (твердый сплав) таллия, мышьяка и свинца. Контакт с этим минералом может привести к выпадению волос (алопеция, облысение, плешивость), сложным заболеваниям кожи и к летальному исходу (смерти). Ядовитыми являются все его основные компоненты. Очень похож на свинец, самородное серебро, пирит ("сухой пирит") и арсенопирит. Похож также на антимонит (соединение сурьмы, тоже очень ядовитое). Похож также на цеолиты. Гутчинсонит является опасной и поразительной твердосплавной смесью таллия, свинца и мышьяка. Три редких, очень дорогих и ценных рудных металла образуют ядовитый смертельный коктейль минералов, с которым нужно обращаться с предельной осторожностью. Воздействуют на мозг, сердце и печень одновременно.

Таллий - мрачный двойник свинца. Этот плотный, жирный металл похож на свинец по атомной массе, но является еще более смертоносным. Таллий является редким металлом, который появляется в очень токсичных соединениях, состоящих из странных комбинаций элементов (твердые сплавы). Эффекты воздействия таллия опаснее свинца, и включают потерю волос (алопецию, облысение), серьезные заболевания при контакте с кожей и во многих случаях приводят к смерти. Гутчинсонит был назван в честь Джона Хатчинсона (John Hutchinson), известного минералога из Кембриджского университета. Этот минерал можно найти в горных районах Европы, чаще всего в рудных месторождениях. Минерал, популярный в медицинской стоматологии и др. Минерал боятся алкоголики.

Гутчинсонит (Хатчинсонит) иногда в шутку называют "сухим" или "твердым спиртом", "твердым алкоголем" (и не только за вредное воздействие опьяняющим отравлением на организм и здоровье человека). Химическая формула пищевого спирта (алкоголь) - С2 Н5 (ОН). Гутчинсонит (Хатчинсонит) имеет химическую формулу - 5 As2 S5 * (Pb, Tl) S` Ag2 S или 5 As2 S5 * (Pb, Tl) S` Ag Ag S. Формулу Гутчинсонита (Хатчинсонита) иногда переписывают иначе - As2 S5 * (Pb) + As2 S5 * (Tl) + As2 S5 * S + As2 S5 * Ag + As2 S5 * AgS. Химическое разделение компонентов на производстве также выполняется по типу разных спиртов (слои механического обогащения, различные по массе и весу, которые дробят ультразвуком и сепарируют в центрифуге или на виброплатформе - фильм ужасов "Чужие"). Возможны другие схожие варианты химической формулы (состав варьируется).

ДОПОГ 6.1
Токсичные вещества (яд)
Риск отравления при вдыхании, контакте с кожей или проглатывании. Составляют опасность для водной окружающей среды или канализационной системы
Использовать маску для аварийного оставления транспортного средства

ДОПОГ 3
Легковоспламеняющиеся жидкости
Риск пожара. Риск взрыва. Емкости могут взрываться при нагревании (сверхопасны – легко горят)

ДОПОГ 2.1
Легковоспламеняющиеся газы
Риск пожара. Риск взрыва. Могут находиться под давлением. Риск удушья. Могут вызывать ожоги и/или отморожения. Емкости могут взрываться при нагревании (сверхопасны - практически не горят)
Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Красный ромб, номер ДОПОГ, черное или белое пламя

ДОПОГ 2.2
Газовый баллон Невоспламеняющиеся, нетоксичные газы.
Риск удушья. Могут находиться под давлением. Могут вызывать отморожение (похоже на ожог - бледность, пузыри, черная газовая гангрена - скрип). Емкости могут взрываться при нагревании (сверхопасны – взрыв от искры, пламени, спички, практически не горят)
Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Зеленый ромб, номер ДОПОГ, черный или белый газовый баллон (типа "баллон", "термос")

ДОПОГ 2.3
Токсичные газы . Череп и скрещенные кости
Опасность отравления. Могут находиться под давлением. Могут вызывать ожоги и/или отморожения. Емкости могут взрываться при нагревании (сверхопасны – мгновенное распространение газов по окрестности)
Использовать маску для аварийного оставления транспортного средства. Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Белый ромб, номер ДОПОГ, черный череп и скрещенные кости

Наименование особо опасного при транспортировке груза Номер
ООН
Класс
ДОПОГ
Мышьяка (III) окисел АРСЕНА ТРИОКСИД 1561 6.1
1685 6.1
1557 6.1
1561 6.1
Кальций мышьяковистокислый АРСЕНАТА СОЕДИНЕНИЕ ТВЕРДОЕ, Н.З.К. неорганическое включая: Арсенати, н.з.к., Арсенит, н.з.к., Арсена сульфиды, н.з.к. 1557 6.1
Кальций мышьяковокислый КАЛЬЦИЯ АРСЕНАТ 1573 6.1
КАЛЬЦИЯ АРСЕНАТ 1573 6.1
КАЛЬЦИЯ АРСЕНАТА И КАЛЬЦИЯ АРСЕНИТА СМЕСЬ ТВЕРДАЯ 1574 6.1
Кальция арсенит 1557 6.1
АММОНИЯ АРСЕНАТ 1546 6.1
Ангидрид мышьяковистый АРСЕНА ТРИОКСИД 1561 6.1
АРСЕН 1558 6.1
АРСЕНОВАЯ ПЫЛЬ 1562 6.1
Арсеноводород Арсин 2188 2
Арсено-содовый раствор 1556 6.1
АРСЕНА БРОМИД 1555 6.1
АРСЕНА ПЕНТАОКСИД 1559 6.1
АРСЕНА СОЕДИНЕНИЕ ЖИДКОЕ, Н.З.К. неорганическое, включая: Арсенати, н.з.к., Арсенит, н.з.к., но Арсена сульфиды, н.з.к. 1556 6.1
АРСЕНА СОЕДИНЕНИЕ ТВЕРДОЕ, Н.З.К. неорганическое, включая: Арсенати, н.з.к., Арсенит, н.з.к., но Арсена сульфиды, н.з.к. 1557 6.1
АРСЕНА ТРИОКСИД 1561 6.1
АРСЕНА ТРИХЛОРИД 1560 6.1
АРСИН 2188 2
ЖЕЛЕЗА (II) АРСЕНАТ 1608 6.1
ЖЕЛЕЗА (III) АРСЕНАТ 1606 6.1
ЖЕЛЕЗА (III) АРСЕНИТ 1607 6.1
КАЛИЯ АРСЕНАТ 1677 6.1
КАЛИЯ АРСЕНИТ 1678 6.1
КИСЛОТА АРСЕНОВАЯ ТВЕРДАЯ 1554 6.1
КИСЛОТА АРСЕНОВАЯ ЖИДКАЯ 1553 6.1
МАГНИЯ АРСЕНАТ 1622 6.1
МЕДИ АРСЕНИТ 1586 6.1
МЕДИ АЦЕТОАРСЕНИТ 1585 6.1
Натрий арсенистокислий НАТРИЯ АРСЕНИТ ТВЕРДЫЙ 2027 6.1
Натрий мышьяковокислый НАТРИЯ АРСЕНАТ 1685 6.1
НАТРИЯ АЗИД 1687 6.1
НАТРИЯ АРСЕНАТ 1685 6.1
НАТРИЯ АРСЕНИТ ТВЕРДЫЙ 2027 6.1
НАТРИЯ АРСЕНИТА ВОДНЫЙ РАСТВОР 1686 6.1
Олова арсенид 1557 6.1
Олово мышьяковистое Олова арсенит 1557 6.1
2760 3
ПЕСТИЦИД АРСЕНОСОДЕРЖАЩИЙ ЖИКИЙ ЛЕГКОВОСПЛАМЕНЯЮЩИЙСЯ ТОКСИЧНЫЙ с температурой возгорания менее 23 o С 2760 3
ПЕСТИЦИД АРСЕНОСОДЕРЖАЩИЙ ТВЕРДЫЙ ТОКСИЧНЫЙ 2759 6.1
ПЕСТИЦИД АРСЕНОСОДЕРЖАЩИЙ ЖИДКИЙ ТОКСИЧНЫЙ 2994 6.1
ПЕСТИЦИД АРСЕНОСОДЕРЖАЩИЙ ЖИКИЙ ТОКСИЧНЫЙ ЛЕГКОВОСПЛАМЕНЯЮЩИЙСЯ с температурой возгорания не менее 23 o С 2993 6.1
РТУТИ (II) АРСЕНАТ 1623 6.1
СВИНЦА АРСЕНАТИ 1617 6.1
СВИНЦА АРСЕНИТ 1618 6.1
СОЕДИНЕНИЕ АРСЕНО-ОРГАНІЧНА, ЖИДКОЕ, Н.З.К. 3280 6.1
СОЕДИНЕНИЕ АРСЕНО-ОРГАНИЧЕСКОЕТВЕРДОЕ, Н.З.К.* 3465 6.1
СЕРЕБРА АРСЕНИТ 1683 6.1
СТРОНЦИЯ АРСЕНИТ 1691 6.1
ЦИНКА АРСЕНАТ, ЦИНКА АРСЕНИТ или ЦИНКА АРСЕНАТА И ЦИНКА АРСЕНИТА СМЕСЬ 1712 6.1

Мышьяк - химический элемент 5-группы 4-го периода таблицы Менделеева с атомным номером 33. Является хрупким полуметаллом стальной окраски с зеленоватым оттенком. Сегодня мы с вами подробнее рассмотрим, что такое мышьяк, и познакомимся с основными свойствами это элемента.

Общая характеристика

Уникальность мышьяка заключается в том, что он встречается буквально везде - в горных породах, воде, минералах, почве, растительном и животном мире. Поэтому его часто называют не иначе как вездесущий элемент. Мышьяк беспрепятственно распределяется по всем географическим регионам планеты Земля. Причиной тому являются летучесть и растворимость его соединений.

Название элемента связано с его использованием для истребления грызунов. Латинское слово Arsenicum (формула мышьяка в периодической таблице - As) образовалось от греческого Arsen, означающего «сильный» или «мощный».

В организме среднестатистического взрослого человека содержится порядка 15 мг этого элемента. В основном он концентрируется в тонком кишечнике, печени, легких и эпителии. Всасывание вещества осуществляется желудком и кишечником. Антагонистами мышьяка выступают сера, фосфор, селен, некоторые аминокислоты, а также витамины Е и С. Сам элемент ухудшает всасывание цинка, селена, а также витаминов А, С, В9 и Е.

Как и многие другие вещества, мышьяк может быть и ядом, и лекарством, все зависит от дозы.

Среди полезных функций такого элемента, как мышьяк, можно выделить:

  1. Стимулирование усвоения азота и фосфора.
  2. Улучшение кроветворения.
  3. Взаимодействием с цистеином, белками и липоевой кислотой.
  4. Ослабление окислительных процессов.

Суточная потребность в мышьяке для взрослого человека составляет от 30 до 100 мкг.

Историческая справка

Один из этапов развития человечества носит названием «бронзовый», так как в этот период люди сменили каменное оружие на бронзовое. Данный металл представляет собой сплав олова с медью. Однажды при выплавке бронзы мастера случайно использовали вместо медной руды продукты выветривания медно-мышьякового сульфидного минерала. Полученный сплав легко отливался и отлично ковался. В те времена никто еще не знал, что такое мышьяк, но залежи его минералов намеренно искали для производства качественной бронзы. Со временем от этой технологии отказались, очевидно, из-за того, что при ее использовании часто возникали отравления.

В Древнем Китае пользовались твердым минералом под названием реальгар (As 4 S 4). Его применяли для резьбы по камню. Так как под воздействием температуры и света реальгар превращался в другое вещество - As 2 S 3 , от него также вскоре отказались.

В 1 веке до нашей эры, римский ученый Плиний Старший вместе с ботаником и врачом Диоскоридом описывали минерал мышьяка под названием аурипигмент. Его название переводится с латыни как «золотая краска». Вещество применяли как желтый краситель.

В средневековье алхимики классифицировали три формы элемента: желтую (сульфид As 2 S 3), красную (сульфид As 4 S 4) и белую (оксид As 2 О 3). В 13 веке при нагреве желтого мышьяка с мылом алхимики получали металлоподобное вещество. Вероятнее всего, оно было первым образцом чистого элемента, полученного искусственным образом.

Что такое мышьяк в чистом виде, узнали в начале 17 века. Произошло это, когда Иоганн Шредер, восстанавливая древесным углем оксид, выделил этот элемент. Спустя несколько лет французскому химику Никола Лемери удалось получить вещество путем нагрева его оксида в смеси с мылом и поташом. В следующем веке мышьяк был уже хорошо известен в статусе полуметалла.

Химические свойства

В периодической системе Менделеева химический элемент мышьяк расположен в пятой группе и причислен к семейству азота. В естественных условиях он представлен единственным стабильным нуклидом. Искусственным путем получают более десяти радиоактивных изотопов вещества. Диапазон значений периода полураспада у них довольно широкий - от 2-3 минут до нескольких месяцев.

Хоть мышьяк иногда и нарекают металлом, он скорее относится к неметаллам. В соединении с кислотами он не образует солей, однако является сам по себе кислотообразующим веществом. Именно поэтому элемент идентифицируют как полуметалл.

Мышьяк, как и фосфор, может находиться в различных аллотропных конфигурациях. Одна из них - серый мышьяк, представляет собой хрупкое вещество, которое на изломе имеет металлический блеск. Электропроводность данного полуметалла в 17 раз ниже, чем у меди, но в 3,6 выше, чем у ртути. С повышением температуры она уменьшается, что характерно для типичных металлов.

При быстром охлаждении мышьяковых паров до температуры жидкого азота (-196 °С) можно получить мягкое вещество желтоватого цвета, напоминающее желтый фосфор. При нагревании и воздействии ультрафиолета желтый мышьяк моментально превращается в серый. Реакция сопровождается выделением тепла. Когда пары конденсируются в инертной атмосфере, образуется еще одна форма вещества - аморфная. Если осадить пары мышьяка, на стекле появляется зеркальная пленка.

Внешняя электронная оболочка данного вещества имеет такое же строение, как фосфор и азот. Как и фосфор, мышьяк образует три ковалентные связи. При сухом воздухе он имеет устойчивую форму, а с повышением влажности - тускнеет и покрывается черной оксидной пленкой. При воспламенении пары вещества горят голубым пламенем.

Так как мышьяк инертен, на него не воздействуют вода, щелочи и кислоты, которые не обладают окислительными свойствами. При контакте вещества с разбавленной азотной кислотой образуется ортомышьяковистая кислота, а с концентрированной - ортомышьяковая. Также мышьяк реагирует с серой, образуя сульфиды разного состава.

Нахождение в природе

В природных условиях такой химический элемент, как мышьяк, часто встречается в соединениях с медью, никелем, кобальтом и железом.

Состав минералов, которые образует вещество, обусловлен его полуметаллическими свойствами. На сегодняшний день известно более 200 минералов этого элемента. Так как мышьяк может находиться в отрицательной и положительной степенях окисления, он легко взаимодействует со многими другими веществами. При положительном окислении мышьяка он выполняет функции металла (в сульфидах), а при отрицательном - неметалла (в арсенидах). Содержащие этот элемент минералы имеют довольно сложный состав. В кристаллической решетке полуметалл может заменять атомы серы, сурьмы и металлов.

Многие соединения металлов с мышьяком с точки зрения состава скорее относятся не к арсенидам, а к интерметаллическим соединениям. Некоторые из них отличаются переменным содержанием главного элемента. В арсенидах одновременно могут присутствовать сразу несколько металлов, атомы которых при близком радиусе ионов могут замещать друг друга. Все минералы, которые причисляют к арсенидам, наделены металлическим блеском, непрозрачны, тяжелы и прочны. Среди естественных арсенидов (всего их около 25) можно отметить следующие минералы: скуттерудит, раммельсбрергит, никелин, леллингрит, клиносаффлорит и прочие.

Интересными с точки зрения химии являются те минералы, в которых мышьяк присутствует одновременно с серой и играет роль металла. Они имеют очень сложное строение.

Природные соли мышьяковой кислоты (арсенаты) могут иметь разную окраску: эритрит - кобальтовую; симплезит, аннабергит и скорид - зеленую, а рузвельтит, кеттигит и гернесит - бесцветную.

По своим химическим свойствам мышьяк достаточно инертен, поэтому его можно встретить в самородном состоянии в виде сросшихся кубиков и иголочек. Содержание примесей в самородке не превышает 15 %.

В почве содержание мышьяка колеблется в приделах 0,1-40 мг/кг. В районах вулканов и местах, где залегает мышьяковая руда, этот показатель может доходить до 8 г/кг. Растения в таких местах гибнут, а животные болеют. Подобная проблема характерна для степей и пустынь, где не происходит вымывание элемента из почвы. Обогащенными считаются глинистые породы, так как в них содержание мышьяковистых веществ вчетверо больше, чем в обычных.

Когда чистое вещество в процессе биометилирования превращается в летучее соединение, оно может выноситься из почвы не только водой, но и ветром. В обычных районах концентрация мышьяка в воздухе составляет в среднем 0,01 мкг/м 3 . В промышленных же районах, где работают заводы и электростанции, этот показатель может достигать и 1 мкг/м 3 .

Умеренное количество мышьяковистых веществ может содержаться в составе минеральной воды. В лечебных минеральных водах, согласно общепринятым нормативам, концентрация мышьяка не должна превышать 70 мкг/л. Здесь стоит отметить, что даже при более высоких показателях отравление может произойти только при регулярном употреблении такой воды.

В природных водах элемент может находиться в различных формах и соединениях. Трехвалентный мышьяк, к примеру, гораздо токсичнее, чем пятивалентный.

Получение мышьяка

Элемент получают как побочный продукт переработки свинцовых, цинковых, медных и кобальтовых руд, а также во время добывания золота. В составе некоторых полиметаллических руд содержание мышьяка может доходить до 12 %. При их нагревании до 700 °С происходит сублимация - переход вещества из твердого состояния в газообразное, минуя жидкое. Важным условием для осуществления этого процесса является отсутствие воздуха. При нагревании мышьяковых руд на воздухе образуется летучий оксид, получивший название «белый мышьяк». Подвергнув его конденсации с углем, восстанавливают чистый мышьяк.

Формула получения элемента выглядит следующим образом:

  • 2As 2 S 3 +9O 2 =6SO 2 +2As 2 O 3 ;
  • As 2 O 3 +3C=2As+3CO.

Добыча мышьяка относится к опасным производствам. Парадоксальным является тот факт, что наибольшее загрязнение окружающей среды этим элементом происходит не вблизи предприятий, которые его производят, а около электростанций и заводов цветной металлургии.

Еще один парадокс состоит в том, что объемы получения металлического мышьяка превышают потребность в нем. В сфере добывания металлов это очень редкое явление. Излишки мышьяка приходится утилизировать путем захоронения металлических контейнеров в старые шахты.

Наибольшие залежи мышьяковых руд сосредоточены в таких странах:

  1. Медно-мышьяковые - США, Грузия, Япония, Швеция, Норвегия и государства Средней Азии.
  2. Золото-мышьяковые - Франция и США.
  3. Мышьяково-кобальтовые - Канада и Новая Зеландия.
  4. Мышьяково-оловянные - Англия и Боливия.

Определение

Лабораторное определение мышьяка производится путем осаждения желтых сульфидов из солянокислых растворов. Следы элемента определяют по методу Гутцейта или с помощью реакции Марша. В последние полвека были созданы всяческие чувствительные методики анализа, которые позволяют выявить даже совсем небольшое количество данного вещества.

Некоторые соединения мышьяка анализируют с помощью селективного гибридного метода. Он предполагает восстановление исследуемого вещества в летучий элемент арсин, который затем вымораживают в емкости, охлажденной с помощью жидкого азота. Впоследствии при медленном подогреве содержимого емкости различные арсины начинают испаряться отдельно друг от друга.

Промышленное использование

Практически 98% добываемого мышьяка не применяют в чистом виде. Широкое использование в различных отраслях промышленности получили его соединения. Ежегодно идет добыча и переработка сотен тон мышьяка. Его добавляют в подшипниковые сплавы для повышения их качества, применяют для повышения твердости кабелей и свинцовых аккумуляторов, а также используют в производстве полупроводниковых приборов вместе с германием или кремнием. И это лишь самые масштабные направления.

Как легирующая добавка мышьяк придает проводимость некоторым «классическим» полупроводникам. Его добавка к свинцу значительно увеличивает прочность металла, а к меди - текучесть, твердость и коррозионную стойкость. Мышьяк также иногда добавляют в некоторые сорта бронз, латуней, баббитов и типографических сплавов. Однако зачастую металлурги стараются все же избегать использования этого вещества, так как оно небезопасно для здоровья. Для некоторых металлов большие количества мышьяка также вредны, поскольку они ухудшают свойства исходного материала.

Оксид мышьяка нашел применение в стекловарении в качестве осветлителя стекла. В этом направлении его использовали еще древние стеклодувы. Мышьяковистые соединения являются сильным антисептическим средством, поэтому с их помощью консервируют меха, чучела и шкуры, а также создают необрастающие краски для водного транспорта и пропитки для древесины.

Благодаря биологической активности некоторых производных мышьяка, вещество используется в производстве стимуляторов роста растений, а также лекарственных препаратов, в том числе противоглистных средств для скота. Средства, содержащие данный элемент, применяют для борьбы с сорняками, грызунами и насекомых. Раньше, когда люди не задумывались, о том, можно ли мышьяк использовать для производства продуктов питания, в сельском хозяйстве элемент имел более широкое применение. Однако после выявления его ядовитых свойств веществу пришлось искать замену.

Важными областями применения данного элемента являются: производство микросхем, волоконной оптики, полупроводников, пленочной электроники, а также выращивание микрокристаллов для лазеров. Для этих целей используют газообразные арсины. А изготовление лазеров, диодов и транзисторов не обходится без арсенидов галлия и индия.

Медицина

В тканях и органах человека элемент представлен главным образом в белковой фракции, в меньше мере - в кислоторастворимой. Он участвует в брожении, гликолизе и окислительно-восстановительных реакциях, а также обеспечивает распад сложных углеводов. В биохимии соединения данного вещества используются в качестве специфических ферментных ингибиторов, которые необходимы для изучения метаболических реакций. Мышьяк необходим человеческому организму как микроэлемент.

Применение элемента в медицине менее обширное, нежели в производстве. Его микроскопические дозы используются для диагностики всяческих заболеваний и патологий, а также лечения стоматологических болезней.

В стоматологии мышьяк применяет для удаления пульпы. Небольшая порция пасты содержащей мышьяковистую кислоту, буквально за сутки обеспечивает отмирание зуба. Благодаря ее действию, удаление пульпы проходит безболезненно и беспрепятственно.

Широкое применение мышьяк получил также в лечении легких форм лейкоза. Он позволяет снизить или даже подавить патологическое формирование лейкоцитов, а также простимулировать красное кроветворение и выделение эритроцитов.

Мышьяк как яд

Все соединения данного элемента являются ядовитыми. Острое отравление мышьяком приводит к болям в животе, диареи, тошноте и угнетению центральной нервной системы. Симптоматика интоксикации этим веществом напоминает симптоматику холеры. Поэтому ранее в судебной практике часто встречались случаи умышленного отравления мышьяком. В криминальных целях элемент наиболее часто использовался в виде триоксида.

Симптомы интоксикации

На первых порах отравление мышьяком проявляется металлическим вкусом во рту, рвотой и болями в животе. Если не принять меры, могут начаться судороги и даже паралич. В самом худшем случае отравление может привести к летальному исходу.

Причиной отравления могут стать:

  1. Вдыхание пыли, содержащей мышьяковистые соединения. Происходит, как правило, на заводах по получению мышьяка, на которых не соблюдаются правила охраны труда.
  2. Употребление отравленной пищи или воды.
  3. Применение некоторых лекарственных средств.

Первая помощь

Наиболее общедоступным и известным противоядием в случае интоксикации мышьяком является молоко. Содержащийся в нем белок казеин образует с ядовитым веществом нерастворимые соединения, которые не могут всасываться в кровь.

В случае острого отравления для быстрой помощи пострадавшему ему нужно сделать промывание желудка. В больничных условиях проводят также гемодиализ, нацеленный на очистку почек. Из лекарственных препаратов применяют универсальный антидот - "Унитиол". Дополнительно могут быть использованы вещества-антагонисты: селен, цинк, сера и фосфор. В дальнейшем больному в обязательном порядке назначают комплекс из аминокислот и витаминов.

Дефицит мышьяка

Отвечая на вопрос: «Что такое мышьяк?», стоит отметить, что в небольших количествах он необходим человеческому организму. Элемент считается иммунотоксичным, условно эссенциальным. Он принимает участие практически во всех важнейших биохимических процессах человеческого организма. На дефицит этого вещества могут указывать такие признаки: снижение в крови концентрации триглицеридов, ухудшения в развитии и росте организма.

Как правило, при отсутствии серьезных проблем со здоровьем о недостатке мышьяка в рационе переживать не приходится, так как элемент содержится едва ли не во всех продуктах растительного и животного происхождения. Этим веществом особенно богаты морепродукты, злаки, виноградное вино, соки, и питьевая вода. В течение суток из организма выводится 34% потребляемого мышьяка.

При анемии вещество принимают для повышения аппетита, а при отравлении селеном он выступает действенным противоядием.