Где в клетках эукариот происходит процессинг. Созревание (процессинг РНК). Гены ряда белков и РНК

Введение

Биосинтез белка можно разделить на стадии транскрипции , процессинга и трансляции . Во время транскрипции происходит считывание генетической информации, зашифрованной в молекулах ДНК, и запись этой информации в молекулы мРНК. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, ненужные в последующих стадиях, и происходит редактирование нуклеотидных последовательностей. После транспортировки кода из ядра к рибосомам происходит собственно синтез белковых молекул, путем присоединения отдельных аминокислотных остатков к растущей полипептидной цепи.

Процессинг

Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. С появлением процессинга в эукариотической клетке стало возможено комбинирование экзонов гена для получения большего разнообразия белков, кодируемым единой последовательностью нуклеотидов ДНК.

Кэпирование

Химическая структура кэпа

При кэпировании происходит присоединение к 5"-концу транскрипта 7-метилгуанозина посредстом трифосфатного моста, соединяющего их в необычной позиции 5"-5", а также метилирование рибоз двух первых нуклеотидов. Процесс кэпирования начинается еще до окончания транскрипции молекулы пре-мРНК.

Функции кэп-группы:

  • регулирование экспорта мРНК из ядра;
  • защита 5"-конца транскрипта от экзонуклеаз;
  • участие в инициации трансляции

Полиаденилирование

Полиаденилирование заключается в присоединении к 3"-концу транскрипта от 100 до 200 остатков адениловой кислоты, осуществляемом специальным ферментом poly(A)-полимераза.

Сплайсинг

После полиаденилирования мРНК подвергается удалению интронов. Процесс катализируется сплайсосомой и называется сплайсингом.

Трансляция

Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки . Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации .


Wikimedia Foundation . 2010 .

Смотреть что такое "Процессинг (биология)" в других словарях:

    У этого термина существуют и другие значения, см. Процессинг (биология). Процессинг деятельность, включающая в себя обработку и хранение информации, необходимой при осуществлении платежей. Термин часто используется в отрасли банковских… … Википедия

    Доставка малых РНК, содержащих шпильки, при помощи вектора на основе лентивируса и механизм РНК интерференции в клетках млекопитающих РНК интерференция (а … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновые кислоты (РНК) нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток… … Википедия

    Центральная догма молекулярной биологии обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом… … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновые кислоты (РНК) нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты … Википедия

    Пре мРНК со стеблем петлёй. Атомы азота в основаниях выделены голубым, кислорода в фосфатном остове молекулы красным Рибонуклеиновая кислота (РНК) одна из трёх основных макромолекул (две другие … Википедия

    Центральная догма молекулярной биологии обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком… … Википедия

    Схема синтеза белка рибосомой Биосинтез белка сложный многостадийный процесс синтеза полипептидной цепи из … Википедия

  • Задание 1. Ознакомиться с внешним видом и ультраструктурой эукариотных клеток.
  • Классификация нуклеотидных последовательностей в геноме эукариот (уникальные и повторяющиеся последовательности).
  • Клетка - элементарная, генетическая и структурно-функциональная биологическая единица. Прокариотические и эукариотические клетки.
  • Лекция № 11. Антигены, основные свойства. Антигены гистосовместимости. Процессинг антигенов.
  • Органоиды эукариотической клетки, их функции и гипотезы происхождения.
  • Принцип регуляции генной активности у прокариот (модель оперона) и эукариот.
  • Энхансеры.

    Усиливающие транскрипцию при взаимодействии со специфическими белками. Энхансеры это не непрерывная – прерывающиеся последовательности ДНК. Они организованы в модули (М1, М2, М3, М4). Одинаковые модули могут встречаться в разных энхансерах, но для каждого энхансера набор модулей уникален. Модуль это короткая последовательность, состоящая не более чем из 2х витков спирали – примерно 20 нуклеотидных пар. Модули ориентированы перед, за и даже внутри гена. Таким образом М1, М2, М3 и М4 это один энхансер состоящий из 4х модулей. Каждый из них узнаётся своими белками, а они в свою очередь взаимодействуют друг с другом. Если в клетке присутствуют все соответствующие белки, то участку ДНК придаётся определённая конформация и начинается синтез мРНК.

    Актуализация. Все соматические клетки многоклеточного эукариотического организма имеют одинаковый набор генов. Все гены в них работают на фоновом уровне и не имеют фенотипического проявления, а экспрессируются лишь те, у которых все энхансерные модули узнаны своими белками и эти белки взаимодействуют друг с другом.

    Сайленсоры. Это последовательности ослабляющие транскрипцию при взаимодействии с белками. При соответствующем наборе белков экспрессия отдельных генов может быть подавлена.

    Некоторые реперссированые (не экспрессирующиеся) гены активируются каскадом событий, запускаемым повышением температуры или синтезом гормона. Гормон, поступив в кровоток, связывается с рецепторами, проникает в клетку, взаимодействует с клеточными белками, изменяет их конформацию, такой белок проникает в ядро, связывается с регуляторным элементом, происходит инициация транскрипции соответствующих генов. Есть белки, которые взаимодействуя с регуляторными элементами блокируют транскрипцию. Например: белок NRSF блокирует транскрипцию соответствующих генов, в нейронах этот белок не синтезируется и как следствие идёт активная транскрипция.

    Процессинг РНК у эукариот.

    Посттарнскрипционному Ему подвергаются все РНК. Процессинг рРНК и тРНК принципиально не отличается от прокариот.

    Процессинг мРНК эукариот

    1. Кэпирование. Все 100% синтезированных мРНК. Кэп – метилированый гуанозинтрифосфат присоединенный в необычной позиции (5’ к 5‘)и две метилированые рибозы.



    Функции: узнавание кэп-связывающих белков, защита от действии экзонуклеаз

    По мере образования про-мРНК (до 30 нуклеотидов) к 5» концу несущему обязательно пурин (аденин, гуанозин) присоединяется гуанин, который затем метилируется. Участие – гуанинтрансферазы.

    2. Полиаденилирование. Только 95% всех мРНК и именно эти 95% вступают в этап сплайсинга. Другие 5% не подвергаются сплайсингу и эта матричная РНК в которой зашифрованы альфа и бета интерфероны и белки гистоны.

    После завершения синтеза мРНА, полиаденидированию предшествует разрезание специфической эндо кулеазо). Ближе 3» концу про-мРНК, а именно через 20 нуклеотидов после специфической последовательности (ААУАА) синтез безматричный. у каждого вида мРНК полиАхвост определённой длины, покрыт полиАсвязывающими белками. Врея жизни мРНК коррелирует с длиной полиАхвоста.

    3. Сплайсингу подвергаются 95% мРНК. Ф. Шарп, 1978 год. Копии вырезанных интронов гидролизуются до нуклеотидов. Осуществляется матюразами. Иногда в сплайсинге участвует sРНК. Правила: 1. фланкированы GT-AG, 2. Нуерация остаётся, но может быть вместе с интронами вырезан экзон.



    Цис-сплайсинг (внутримолекулярный сплайсинг) осуществляется в ядре. На первом этапе происходит сборка комплекса сплайсинга. Далее происходит расщепление в 5»сайте сплайсинга, в ходе реакции накапливается два продукта – правильно лигированые экзоны и свободный целый интрон в виде структуры типа «лассо». Множество ядерных факторов белков и рибонуклеопротеидных комплексов - Малые ядерные рибонуклеопротеиды. Этот комплекс, который катализирует сплайсинг, называют сплайсингосомой. Она состоит из интрона, связанного минимум с 5ю мя рнп и некоторыми вспомогательными белками. Сплайсингосомы образуются путём спаривания молекул РНК, присоединением белков к РНК и связыванием этих белков друг с другом. Конечным продуктом такого сплайсинга является вырезание интрона и сшивание фланкирующих его экзонов.

    Транс-сплайсинг это пример межмолекулярного сплайсинга. Показан для всех мРНК у трипаносомы и продемонстрирована в опятах ин витро. В ходе него происходит лигирование двух экзонов находящихся в разных молекулах РНК с одновременным удалением фланкирующих их интронов.

    Альтернативный сплайсинг обнаружен от дрозофилы до человека и вирусов и показан он для генов, кодирующих белки, участвующие в формировнаии цитоскелета, мышечных сокращений, сборке мемебранных рецепторов, пептидных гормонов, в промежуточном метаболизме и транспозиции ДНК. В сплайсингосоме этот процесс тоже идёт, связан с ферментами занимающимися полиаденилированием. Таким образом мРНК на всём пути следования до завершения трансляции, защищена от нуклеаз с помощью связанных с ней белков (информоферы). Комплекс мРНК с информоферами с ифнормосомы, плюс сРНК. В составе информосом мРНК живёт от нескольких минут до нескольких дней.

    4. Редактирование

    Сплайсинг тРНК.

    Интроны в генах тРНК локализованы через один нуклеотид после антикодона ближе к 3»концу тРНК. От 14 до 60 нуклеотидов. Механизм сплайсинга тРНК лучше всего изучен у дрожжей, а так же в опытах с другими низшими эукариотами и растениями. Задача вырезания интрона в антикодоновой петле реализуется за счёт участия:

    Эндонуклеаз (узнать интрон и расщепить про-тРНК в обоих сайтах сплайсинга с образованием свободных 3» и 5»концов экзонов)

    Полифункциональный белок (катализирующий все реакции кроме последней – фосфатазной)

    2»фосфатаза (удаляет монофосфат с 2»конца 5»концевого экзона)

    Лигаза (сшивает)

    Сплайсинг рРНК.

    Гены ядерных рРНК низших эукариот содержат особые интроны, которые претерпевают уникальный механизм сплайсинга. Это интроны группы I, их нет в генах позвоночных. Общие свойства: сами катализируют свой сплайсинг (автосплайсинг), информация для сплайсинга содержится в коротких внутренних последовательностях внутри интрона(эти последовательности обеспечивают укладку молекулы с образованием характерной пространственной структуры), этот сплайсинг инициируется свободным гуанозином (экзогенным) или любым из его 5»фосфорилированых производных, конечными продуктами являются зрелая рРНК линейная РНК и кор-интроны (кольцевые)

    Автоспласинг 1982 г., на инфузория, Томас Чек

    Этот процесс чувствителен к ионам магния. Этот сплайсинг показывает что каталитической активностью облажают не только белки но и про-рРНК. Самосплайсинг интронов 1 группы осуществляется последовательно реакций транс-этерификации, где процессы фосфодиэфирного обмена не сопровождаются гидролизом.

    Сплайсинг интронов группы 2 мало распространены, обнаружены в 2х митохондриальных генах дрожжей: ген одной из субъединиц цитохромоксидазы и ген цитохрома Б. так же подвергаются самосплайсингу, но инициация сплайсинга и дёт при участии эндогенного гуанозина, то есть гуанозина находящегося в самом интроне. Высвобожденные интроны – подобны лассо, где 5»концевой фосфат РНК интрона соединён фосфодиэфирной связью с 2»гидроксильной группы внутреннего нуклеотида.

    Регуляция экспрессии генов у эукариот

    Процессинг рРНК: нарезание первичноготранскрипта, метилирование, сплайсинг. Уэукариот все рРНК синтезируются как часть одного транскрипта. Он нарезается с помощью экзо и эндонуклеаз на зрелыерРНК. Предшественник содержит 18, 5.8, 28S рРНК и называется 45S РНК. Процессинг рРНК требует участия мяРНК. У некоторых организмов в составе предшественника 28S РНК находятся вставки/интраны, кот.удаляются в результате процессинга и фрагменты РНК сшиваются в результате сплайсинга.

    Упрокариот предшественник рРНК содержит 16, 23, 5S рРНК + несколько предшественников тРНК. 3 и 5’ концы сближены за счет комплиментарно прилегающих пар оснований. Такая структура разрезается РНКазойIII. Оставшиесярибонуклеотиды отрезаются экзонуклеазами/подравнивание. Процессинг 5’конца тРНК осуществляется РНКазой, а 3’конца – РНКазойД.тРНК-нуклеотидилтрансфераза достраивает ССА-хвост.

    У эукариот предшественник тРНК содержит в себе интрон, он не ограничен консервативными последовательностями и встроен в антикодоновую петлю. Трекбуется удаление интронов и сплайсинг. В основе сплайсинга – узнавание вторичной структуры тРНК, требует участия ферментров с нуклеазной (расщипляют РНК на границкэкзон-интрон с двух сторон) и лигазной (сшивание свободных 3 и 5’-конов) активности. После высвобождения интронатРНК сворачивается в обычную структуру.

    Процессинг мРНК. Модификация 5’-конца (кэпирование). Модификация 3’-конца (полиаденилирование). Сплайсинг первичных транскриптовмРНК, сплайсосома. Автосплайсинг. Альтернативный сплайсинг.

    Процессинг пре-мРНК эукариот состоит из нескольких этапов:

    1. Отрезание лишних длинных концевых последовательностей.

    2. Присоединение к 5’-концу последовательности КЭПа, в котором обязательно присутствует 7-метилгуанозин, с которого начинается КЭП. Далее располагается 1-3 метилированныхрибонуклеотидов. Предполагают, что КЭП необходим для стабилизации мРНК, предохраняя ее от расщепления 5’-экзонуклеазами, а также узнается рибосомой. Образование КЭПа дает возможность прохождения сплайсинга.

    3. Вырезание интронов и сплайсингэкзонов.

    В сплайсинге, как правило, участвуют особые рибонуклеопротеиновые частицы (РНП) - малые ядерные РНП (мяРНП), в состав которых входят мяРНК, богатые урацилом и обозначаемые U1-U6 (иногда называемые рибозимами) и многочисленные белки. Эти РНП-частицы на стыках интронов и экзонов образуют функциональный комплекс, получивший название сплайсосомы (сплайсмосомы). Функции U-частиц заключаются в распознавании сайтов сплайсинга. В частности, UI узнает 5’-концевой сайт сплайсинга, a U2 - 3’-концевой сайт. При этом происходит комплементарное взаимодействие и сближение между этими сайтами и соответствующими последовательностями в РНК U1 и U2 частиц. Таким образом, происходит выпетливаниеинтрона. Соседние экзоны входят в контакт друг с другом в результате взаимодействия между факторами, распознающими индивидуальные экзоны.

    Некоторые интроны удаляются с помощью автосплайсинга , не требуя никаких дополнительных компонентов, кроме самих пре-мРНК. Первым шагом является разрыв фосфодиэфирной связи в 5’-положении интрона, что приводит к отделению экзона 1 от молекулы РНК, содержащий интрон и экзон 2. 5’-конец интрона образует петлю и соединяется с нуклеотидом А, входящим в последовательность, называемую участком разветвления и расположенную выше 3’-конца интрона. В клетках млекопитающих участок разветвления содержит консервативную последовательность, ключевой А-нуклеотид в этой последовательности расположен в положении 18-28 пн выше 3’-конца интрона. У дрожжей этой последовательностью является UACUAAC. Интрон удаляется в форме лассо.

    В некоторых случаях в аминокислотные последовательности трансформируются не все экзоны. В результате с одного гена считывается несколько мРНК - альтернативныйсплайсинг . Кроме того использование альтернативных промоторов и терминаторов может изменять 5’и 3’ концы транскрипта.

    4. Добавление нуклеотидов к З’-концу последовательности из 150-200 адениловых нуклеотидов, осуществляемое специальными поли(А)-полимеразами.

    5. Модификация оснований в транскрипте. Очень часто при созревании пре-мРНК происходят химические превращения некоторых оснований, например превращение одного азотистого основания в другое (С в U или наоборот).

    Таким образом, в результате транскрипции образуются рибонуклеиновые кислоты. Таким образом, нуклеиновые кислоты обеспечивают поддержание жизнедеятельности клетки, путем хранения и экспрессии генетической информации, определяя биосинтез белка и получение организмом определенных признаков и функций.

    В клетках бактерий к готовому, начинающему отделяться от матрицы участку мРНК присоединяются рибосомы и сразу же начинают синтез белка. Так образуется единый транскрипционно-трансляционный комплекс, который можно обнаружить с помощью электронного микроскопа.

    Синтез РНК уэукариот проходит в ядре и отделен пространственно от места синтеза белка - цитоплазмы. У эукариот, вновь синтезированная РНК сразу же конденсируется с образованием множества рядом расположенных частиц, содержащих белок. В состав этих частиц входит РНК длиной приблизительно 5000 нуклеотидов, нить которой намотана на белковый остов, таким образом образуются гетерогенные ядерные рибонуклеопротеиновые комплексы (гяРНП). Гетерогенны они потому, что имеют разные размеры. Часть этих комплексов являются сплайсмосомами и участвуют в удалении инронов и сплайсингеэкзоновпремРНК.



    После процессинга зрелые молекулы мРНК эукариот узнаются рецепторными белками (входящими в состав ядерных пор), которые способствуют продвижению мРНК в цитоплазму. При этом основные белки, входящие в состав гяРНП никогда не покидают ядро и соскальзывают с мРНК по мере ее продвижения через ядерные поры.

    В цитоплазме мРНК снова соединяется с белками, но уже цитоплазматическими, образуя мРНП. При этом обнаруживаются свободные мРНП-частицы (цитоплазматические информосомы), а также мРНП, связанные с полисомами (комплексами рибосом) (полисомные информосомы). Связанные с полисомамимРНК активно транслируются. Белки, связанные с информосомами, обеспечивают хранение в цитоплазме мРНК в нетранслируемом положении. Переход мРНК к полисомам сопровождается сменой белков - отщеплением или модификацией репрессорных белков и связыванием активаторных белков. Таким образом, в эукариотических клетках мРНК всегда находится в комплексе с белками, которые обеспечивают хранение, транспорт и регуляцию активности мРНК.

    Это процесс превращения транскрипта (пре-иРНК, полученной при транскрипции) в зрелую иРНК, пригодную для трансляции. Стадии процессинга:

    1) Кэпирование
    К 5"-концу транскрипта присоединяется кэп («шапочка», англ.), состоящая из модифицированного гуанина.

    2) Полиаденирование
    К 3"-концу транскрипта присоединяется от 100 до 200 адениновых нуклеотидов.

    3) Сплайсинг
    Это процесс вырезания из транскрипта нужных участков и склеивания их между собой. У эукариот из транскрипта выбрасывается в среднем 5/6 длины.

    Зрелая иРНК состоит из 5 участков:

    1) Кэп необходим для

    • экспорта иРНК из ядра;
    • предотвращения разрушения 5"-конца иРНК в результате действия экзонуклеаз;
    • инициации трансляции.

    2) 5"-НТО (нетранслируемая область) кодирует частоту трансляции. К 5"-НТО могут присоединяться репрессоры или активаторы, изменяющие способность данной иРНК соединяться с рибосомой.

    3) Кодирующая область - с неё производится трансляция. Она начинается со старт-кодона АУГ и заканчивается одним из трех стоп-кодонов.

    4) 3"-НТО кодирует скорость разрушения данной иРНК нуклеазами. К 3"-НТО могут присоединяться репрессоры или активаторы, изменяющие скорость разрушения.

    5) Поли-А тоже отвечает за срок жизни иРНК в цитоплазме.