Операции над событиями (сумма, разность, произведение). Операции над событиями Сумма произведение и разность случайных событий

Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

D = A + B + C

Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

Обнаружение заболеваний первым врачом (А );

Необнаружение заболевания первым врачом ();

Обнаружение заболевания вторым врачом (В );

Необнаружение заболевания вторым врачом ().

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

Заболеваний не обнаружит первый врач () и обнаружит второй (B ).

Обозначим рассматриваемое событие через и запишем символически:

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .

Основные теоремы теории вероятности

Вероятность суммы двух несовместных событий равняется сумме вероятностей этих событий.

Запишем теорему сложения символически:

Р(А + В) = Р(А)+Р(В) ,

где Р - вероятность соответствующего события (событие указывается в скобках).

Пример . У больного наблюдается желудочное кровотечение. Этот симптом регистрируется при язвенной эрозии сосуда (событие А), разрыве варикозно-расширенных вен пищевода (событие В), раке желудка (событие С), полипе желудка (событие D), геморрагическом диатезе (событие F), механической желтухе (событие Е) и конечном гастрите (событие G ).

Врач, основываясь на анализе статистических данных, присваивает каждому событию значение вероятности:

Всего врач имел 80 больных с желудочным кровотечением (n = 80), из них у 12 была язвенная эрозия сосуда (), у 6 - разрыв варикозно-расширенных вен пищевода (), у 36 - рак желудка () и т. д.

Для назначения обследования врач хочет определить вероятность того, что желудочное кровотечение связано с заболеванием желудка (событие I):

Вероятность того, что желудочное кровотечение связано с заболеванием желудка, достаточно высока, и врач может определить тактику обследования, исходя из предположения о заболевании желудка, обоснованном на количественном уровне с помощью теории вероятностей.

Если рассматриваются совместные события, вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности совместного их наступления.

Символически это записывается следующей формулой:

Если представить себе, что событие А заключается в попадании при стрельбе в мишень, заштрихованную горизонтальными полосами, а событие В - в попадании в мишень, заштрихованную вертикальными полосами, то в случае несовместных событий по теореме сложения вероятность суммы равна сумме вероятностей отдельных событий. Если же эти события совместны, то есть некоторая вероятность, соответствующая совместному наступлению событий А и В . Если не ввести поправку на вычитаемое Р(АВ) , т.е. на вероятность совместного наступления событий, то эта вероятность будет учтена дважды, так как площадь, заштрихованная и горизонтальными, и вертикальными линиями, является составной частью обеих мишеней и будет учитываться как в первом, так и во втором слагаемом.

На рис. 1 дана геометрическая интерпретация, наглядно иллюстрирующая данное обстоятельство. В верхней части рисунка помещены непересекающиеся мишени, являющиеся аналогом несовместных событий, в нижней части - пересекающиеся мишени, являющиеся аналогом совместных событий (одним выстрелом можно попасть сразу и в мишень А, и в мишень В).

Прежде чем перейти к теореме умножения, необходимо рассмотреть понятия независимых и зависимых событий и условной и безусловной вероятностей.

Независимым от события В называется такое событие А, вероятность появления которого не зависит от появления или непоявления события В.

Зависимым от события В называется такое событие А, вероятность появления которого зависит от появления или непоявления события В.

Пример . В урне находятся 3 шара, 2 белых и 1 черный. При выборе шара наугад вероятность выбрать белый шар (событие А) равна: Р(А) = 2/3, а черный (событие В)Р(В) = 1/3. Мы имеем дело со схемой случаев, и вероятности событий рассчитываются строго по формуле. При повторении опыта вероятности появления событий А и В остаются неизменными, если после каждого выбора шар возвращается в урну. В этом случае события А и В являются независимыми. Если же выбранный в первом опыте шар в урну не возвращается, то вероятность события (А) во втором опыте зависит от появления или непоявления события (В) в первом опыте. Так, если в первом опыте появилось событие В (выбран черный шар), то второй опыт проводится при наличии в урне 2 белых шаров и вероятность появления события А во втором опыте равна: Р(А) = 2/2= 1.

Если же в первом опыте не появилось событие В(выбран белый шар), то второй опыт проводится при наличии в урне одного белого и одного черного шаров и вероятность появления события А во втором опыте равна: Р(А)=1/2. Очевидно, в этом случае события А и В тесно связаны и вероятности их появления являются зависимыми.

Условной вероятностью события А называется вероятность его появления при условии, что появилось событие В. Условная вероятность символически обозначается Р(А/В).

Если вероятность появления события А не зависит от появления события В , то условная вероятность события А равна безусловной вероятности:

Если вероятность появления события А зависит от появления события В, то условная вероятность никогда не может быть равна безусловной вероятности:

Выявление зависимости различных событий между собой имеет большое значение в решении практических задач. Так, например, ошибочное предположение о независимости появления некоторых симптомов при диагностике пороков сердца по вероятностной методике, разработанной в Институте сердечно-сосудистой хирургии им. А. Н. Бакулева, обусловило около 50% ошибочных диагнозов.

Будем полагать, что результатом реального опыта (эксперимента) может быть один или несколько взаимоисключающих исходов; эти исходы неразложимы и взаимно исключают друг друга. В этом случае говорят, что эксперимент заканчивается одним и только одним элементарным исходом .

Множество всех элементарных событий, имеющих место в результате случайного эксперимента, будем называть пространством элементарных событий W (элементарное событие соответствует элементарному исходу).

Случайными событиями (событиями), будем называть подмножества пространства элементарных событий W .

Пример 1. Подбросим монету один раз. Монета может упасть цифрой вверх - элементарное событие w ц (или w 1), или гербом - элементарное событие w Г (или w 2). Соответствующее пространство элементарных событий W состоит из двух элементарных событий:

W = {w ц,w Г } или W = {w 1 ,w 2 }.

Пример 2. Бросаем один раз игральную кость. В этом опыте пространство элементарных событий W = {w 1 , w 2 , w 3 , w 4 , w 5 , w 6 }, где w i - выпадение i очков. Событие A - выпадение четного числа очков, A = {w 2 ,w 4 ,w 6 }, A W .

Пример 3. На отрезке наугад (случайно) поставлена точка. Измеряется расстояние точки от левого конца отрезка. В этом опыте пространство элементарных событий W = - множество действительных чисел на единичном отрезке.

В более точных, формальных терминах элементарные события и пространство элементарных событий описывают следующим образом.

Пространством элементарных событий называют произвольное множество W , W ={w }. Элементы w этого множества W называют элементарными событиями.

Понятия элементарное событие, событие, пространство элементарных событий , являются первоначальными понятиями теории вероятностей. Невозможно привести более конкретное описание пространства элементарных событий. Для описания каждой реальной модели выбирается соответствующее пространство W .

Событие W называется достоверным событием.

Достоверное событие не может не произойти в результате эксперимента, оно происходит всегда .

Пример 4. Бросаем один раз игральную кость. Достоверное событие состоит в том, что выпало число очков, не меньше единицы и не больше шести, т.е. W = {w 1 , w 2 , w 3 , w 4 , w 5 , w 6 }, где w i - выпадение i очков, - достоверное событие.

Невозможным событием называется пустое множество .

Невозможное событие не может произойти в результате эксперимента, оно не происходит никогда .

Случайное событие может произойти или не произойти в результате эксперимента, оно происходит иногда .

Пример 5. Бросаем один раз игральную кость. Выпадение более шести очков - невозможное событие .

Противоположным событию A называется событие, состоящее в том, что событие A не произошло. Обозначается , .

Пример 6. Бросаем один раз игральную кость. Событие A тогда событие - выпадение нечетного числа очков. Здесь W = {w 1 , w 2 , w 3 ,w 4 , w 5 ,w 6 }, где w i - выпадение i очков, A = {w 2 ,w 4 ,w 6 }, = .

Несовместными событиями называются события

A и B , для которых A B = .

Пример 7. Бросаем один раз игральную кость. Событие A - выпадение четного числа очков, событие B - выпадение числа очков, меньшего двух. Событие A B состоит в выпадении четного числа очков, меньшего двух. Это невозможно, A = {w 2 ,w 4 ,w 6 }, B = {w 1 }, A B = , т.е. события A и B - несовместны.

Суммой событий A и B называется событие, состоящее из всех элементарных событий, принадлежащих одному из событий A или B. Обозначается A + B.

Пример 8. Бросаем один раз игральную кость. В этом опыте пространство элементарных событий W = {w 1 , w 2 , w 3 , w 4 , w 5 , w 6 }, где элементарное событие w i - выпадение i очков. Событие A - выпадение четного числа очков, A B B = {w 5 , w 6 }.

Событие A + B = {w 2 ,w 4 , w 5 , w 6 } состоит в том, что выпало либо четное число очков, либо число очков большее четырех, т.е. произошло либо событие A , либо событие B. Очевидно, что A + B W .

Произведением событий A и B называется событие, состоящее из всех элементарных событий, принадлежащих одновременно событиям A и B. Обозначается AB .

Пример 9. Бросаем один раз игральную кость. В этом опыте пространство элементарных событий W = { w 1 , w 2 , w 3 ,w 4 , w 5 ,w 6 }, где элементарное событие w i - выпадение i очков. Событие A - выпадение четного числа очков, A = {w 2 ,w 4 ,w 6 }, событие B - выпадение числа очков, большего четырех, B = {w 5 , w 6 }.

Событие A B состоит в том, что выпало четное число очков, большее четырех, т.е. произошли оба события, и событие A и событие B, A B = {w 6 } A B W .

Разностью событий A и B называется событие, состоящее из всех элементарных событий принадлежащих A , но не принадлежащих B. Обозначается A\B .

Пример 10. Бросаем один раз игральную кость. Событие A - выпадение четного числа очков, A = {w 2 ,w 4 ,w 6 }, событие B - выпадение числа очков, большего четырех, B = {w 5 , w 6 }. Событие A\ B = {w 2 ,w 4 } состоит в том, что выпало четное число очков, не превышающее четырех, т.е. произошло событие A и не произошло событие B, A\B W .

Очевидно, что

A + A = A, AA = A, .

Нетрудно доказать равенства:

, (A+B )C= AC + BC .

Определения суммы и произведения событий переносятся на бесконечные последовательности событий:

, событие, состоящее из элементарных событий, каждое из которых принадлежит хотя бы одному из;

, событие, состоящее из элементарных событий, каждое из которых принадлежит одновременно всем .

Пусть W - произвольное пространство элементарных событий, а - такая совокупность случайных событий, для которой справедливо: W , AB, A+B и A\B, если A и B.

Числовая функция P, определенная на совокупности событий , называется вероятностью, если: (A ) 0 для любого A из ; (W ) = 1;

  • если A и B несовместны, то P (A+B ) = P (A ) + P (B );
  • для любой убывающей последовательности событий {A i }из ,, такой, что , имеет место равенство .
  • Тройку называют вероятностным пространством .

    Совместные и несовместные события.

    Два события называются совместными в данном опыте, если появление одного из них не исключает появления другого. Примеры : попадание в неразрушаемую цель двумя различными стрелками, выпадение одинакового числа очков на двух кубиках.

    Два события называются несовместными (несовместимыми) в данном опыте, если они не могут произойти вместе при одном и том же испытании. Несколько событий называются несовместными, если они попарно несовместны. Примеры несовместных событий: а) попадание и промах при одном выстреле; б) из ящика с деталями наудачу извлечена деталь – события “извлечена стандартная деталь” и “извлечена нестандартная деталь” в) разорение фирмы и получение ею прибыли.

    Другими словами, события А и В совместны, если соответствующие множества А и В имеют общие элементы, и несовместны если соответствующие множества А и В не имеют общих элементов.

    При определении вероятностей событий часто используется понятие равновозможных событий. Несколько событий в данном опыте называются равновозможными, если по условиям симметрии есть основание считать, что ни одно из них объективно не является более возможным, чем другие (выпадение герба и решки, появление карты любой масти, выбор шара из урны и т.п.)

    С каждым испытанием связан ряд событий, которые, вообще говоря, могут появляться одновременно. Например, при бросании игральной кости событие есть выпадение двойки, а событие – выпадение четного числа очков. Очевидно, что эти события не исключают друг друга.

    Пусть все возможные результаты испытания осуществляются в ряде единственно возможных частных случаев, взаимно исключающих друг друга. Тогда

    ü каждый исход испытания представляется одним и только одним элементарным событием;

    ü всякое событие , связанное с этим испытанием, есть множество конечного или бесконечного числа элементарных событий;

    ü событие происходит тогда и только тогда, когда реализуется одно из элементарных событий, входящих в это множество.

    Произвольное, но фиксированное пространство элементарных событий , можно представить в виде некоторой области на плоскости. При этом элементарные события – это точки плоскости, лежащие внутри . Поскольку событие отождествляется с множеством, то над событиями можно совершать все операции, выполнимые над множествами. По аналогии с теорией множеств строится алгебра событий . При этом могут быть определены следующие операции и соотношения между событиями:

    A ÌB (отношение включения множеств: множество А является подмножеством множества В ) событие A влечет за собой событие В . Иначе говоря, событие В происходит всякий раз, как происходит событие A . Пример - выпадение двойки влечет за собой выпадение четного числа очков.



    (отношение эквивалентности множеств) событие тождественно или эквивалентно событию . Это возможно в том и только в том случае, когда и одновременно , т.е. каждое из них происходит всякий раз, когда происходит другое. Пример – событие А – поломка прибора, событие В – поломка хотя бы одного из блоков (деталей) прибора.

    () сумма событий . Это событие, состоящее в том, что произошло хотя бы одно из двух событий или (логическое "или"). В общем случае, под суммой нескольких событий понимается событие, состоящее в появлении хотя бы одного из этих событий. Пример – цель поражена первым орудием, вторым или обоими одновременно.

    () произведение событий . Это событие, состоящее в совместном осуществлении событий и (логическое "и"). В общем случае, под произведением нескольких событий понимается событие, состоящее в одновременном осуществлении всех этих событий. Таким образом, события и несовместны, если произведение их есть событие невозможное, т.е. . Пример – событие А – вынимание из колоды карты бубновой масти, событие В – вынимание туза, тогда - появление бубнового туза.не наступило.

    Часто оказывается полезной геометрическая интерпретация операций над событиями. Графическая иллюстрация операций называется диаграммами Венна.

    Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

    Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

    Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

    Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

    Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

    D = A + B + C

    Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

    В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

    Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

    Обнаружение заболеваний первым врачом (А );

    Необнаружение заболевания первым врачом ();

    Обнаружение заболевания вторым врачом (В );

    Необнаружение заболевания вторым врачом ().

    Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

    Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

    Заболеваний не обнаружит первый врач () и обнаружит второй (B ).


    Обозначим рассматриваемое событие через и запишем символически:

    Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

    Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .

    Виды случайных событий

    События называют несовместными , если появление одного из них исключает появление других событий в одном и том же испытании.

    Пример 1.10. Из ящика с деталями наугад извлечена деталь. Появление стандартной детали исключает появление нестандартной детали. События {появилась стандартная деталь} и {появилась нестандартная деталь}-несовместные .

    Пример 1.11. Брошена монета. Появление "герба" исключает появление цифры. События {появился герб} и {появилась цифра} - несовместные .

    Несколько событий образуют полную группу , если в результате испытания появится, хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

    Пример 1.12. Приобретены два билета денежно-вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий: {выигрыш выпал на первый билет и не выпал на второй}, {выигрыш не выпал на первый билет и выпал на второй}, {выигрыш выпал на оба билета}, {на оба билета выигрыш не выпал}. Эти события образуют полную группу попарно несовместных событий.

    Пример 1.13. Стрелок произвел выстрел по цели. Обязательно произойдет одно из следующих двух событий: попадание или промах. Эти два несовместных события образуют полную группу .

    События называют равновозможными , если есть основания считать, что ни одно из них не является более возможным, чем другое.

    3. Операции над событиями: сумма (объединение), произведение (пересечение) и разность событий; диаграммы Вьенна.

    Операции над событиями

    События обозначаются заглавными буквами начала латинского алфавита A, B, C, D, …, снабжая их при необходимости индексами. Тот факт, что элементарный исход х содержится в событии А, обозначают .

    Для понимания удобна геометрическая интерпретация при помощи диаграмм Виенна: представим пространство элементарных событий Ω в виде квадрата, каждой точке которого соответствует элементарное событие. Случайные события А и В, состоящие из совокупности элементарных событий х i и у j , соответственно, геометрически изображаются в виде некоторых фигур, лежащих в квадрате Ω (рис. 1-а, 1-б).

    Пусть опыт состоит в том, что внутри квадрата, изображенного на рисунке 1-а, выбирается наугад точка. Обозначим через А событие, состоящее в том, что {выбранная точка лежит внутри левой окружности} (рис.1-а), через В – событие, состоящее в том, что {выбранная точка лежит внутри правой окружности} (рис. 1-б).


    Достоверному событию благоприятствует любое , поэтому достоверное событие будем обозначать тем же символом Ω.

    Два события тождественны друг другу (А=В) тогда и только тогда, когда эти события состоят из одних и тех же элементарных событий (точек).

    Суммой (или объединением) двух событий А и В называется событие А+В (или ), происходящее тогда и только тогда, когда происходит или А, или В. Сумме событий А и В соответствует объединение множеств А и В (рис. 1-д).

    Пример 1.15. Событие, состоящее в выпадении четного числа, является суммой событий: выпало 2, выпало 4, выпало 6. То есть, {х=четное }= {х=2 }+{х=4 }+{х=6 }.

    Произведением (или пересечением) двух событий А и В называется событие АВ (или ), происходящее тогда и только тогда, когда происходит и А, и В. Произведению событий А и В соответствует пересечение множеств А и В (рис. 1-е).

    Пример 1.16 . Событие, состоящее в выпадении 5, является пересечением событий: выпало нечетное число и выпало больше 3-х, то есть, A{x=5}=B{x-нечетное}∙C{x>3}.

    Отметим очевидные соотношения:

    Событие называется противоположным к А, если оно происходит тогда и только тогда, когда А не происходит. Геометрически – это множество точек квадрата, не входящее в подмножество А (рис. 1-в). Аналогично определяется событие (рис. 1-г).

    Пример 1.14. . События, состоящие в выпадении четного и нечетного чисел, - события противоположные.

    Отметим очевидные соотношения:

    Два события называются несовместными , если их одновременное появление в опыте невозможно. Следовательно, если А и В несовместны, то их произведение – невозможное событие:

    Введенные ранее элементарные события, очевидно, попарно несовместны, то есть

    Пример 1.17 . События, состоящие в выпадении четного и нечетного чисел, - события несовместные.