Теорема обратная теореме виета формула. Формула теоремы виета, и примеры решения

Дискриминант, как и квадратные уравнения начинают изучать в курсе алгебры в 8 классе. Решить квадратное уравнение можно через дискриминант и с помощью теоремы Виета. Методика изучения квадратных уравнений, как и формулы дискриминанта достаточно неудачно прививается школьникам, как и многое в настоящем образовании. Поэтому проходят школьные годы, обучение в 9-11 классе заменяет "высшее образование" и все снова ищут - "Как решить квадратное уравнение?", "Как найти корни уравнения?", "Как найти дискриминант?" и...

Формула дискриминанта

Дискриминант D квадратного уравнения a*x^2+bx+c=0 равен D=b^2–4*a*c.
Корни (решения) квадратного уравнения зависят от знака дискриминанта (D) :
D>0 – уравнение имеет 2 различных действительных корня;
D=0 - уравнение имеет 1 корень (2 совпадающих корня):
D<0 – не имеет действительных корней (в школьной теории). В ВУЗах изучают комплексные числа и уже на множестве комплексных чисел уравнение с отрицательным дискриминантом имеет два комплексных корня.
Формула для вычисления дискриминанта достаточно проста, поэтому множество сайтов предлагают онлайн калькулятор дискриминанта. Мы с такого рода скриптами еще не разобрались, поэтому кто знает, как это реализовать просим писать на почту Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. .

Общая формула для нахождения корней квадратного уравнения :

Корни уравнения находим по формуле
Если коэффициент при переменной в квадрате парный то целесообразно исчислять не дискриминант, а четвертую его часть
В таких случаях корни уравнения находят по формуле

Вторая способ нахождения корней - это Теорема Виета.

Формулируется теорема не только для квадратных уравнений, но и для многочленов. Это Вы можете почитать в Википедии или других электронных ресурсах. Однако для упрощения рассмотрим ту ее часть, которая касается приведенных квадратных уравнений, то есть уравнений вида (a=1)
Суть формул Виета заключается в том, что сумма корней уравнения равна коэффициенту при переменной, взятому с противоположным знаком. Произведение корней уравнения равно свободном члену. Формулами теорема Виета имеет запись.
Вывод формулы Виета достаточно прост. Распишем квадратное уравнение через простые множители
Как видите все гениальное одновременно является простым. Эффективно использовать формулу Виета когда разница корней по модулю или разница модулей корней равна 1, 2. Например, следующие уравнения по теореме Виета имеют корни




До 4 уравнения анализ должен выглядеть следующим образом. Произведение корней уравнения равно 6, следовательно корнями могут быть значения (1, 6) и (2, 3) или пары с противоположным знаком. Сумма корней равна 7 (коэффициент при переменной с противоположным знаком). Отсюда делаем вывод что решения квадратного уравнения равны x=2; x=3.
Проще подбирать корни уравнения среди делителей свободного члена, корректируя их знак с целью выполнения формул Виета. В начале это кажется трудно сделать, но с практикой на ряде квадратных уравнений такая методика окажется эффективнее вычисления дискриминанта и нахождения корней квадратного уравнения классическим способом.
Как видите школьная теория изучения дискриминанта и способов нахождения решений уравнения лишена практического смысла - "Зачем школьникам квадратное уравнение?", "Какой физический смысл дискриминанта?".

Давайте попробуем разобраться, что описывает дискриминант?

В курсе алгебры изучают функции, схемы исследования функции и построения графика функций. Из всех функций важное место занимает парабола, уравнение которой можно записать в виде
Так вот физический смысл квадратного уравнения - это нули параболы, то есть точки пересечения графика функции с осью абсцисс Ox
Свойства парабол которые описаны ниже попрошу Вас запомнить. Придет время сдавать экзамены, тесты, или вступительные экзамены и Вы будете благодарны за справочный материал. Знак при переменной в квадрате соответствует тому, будут ли ветки параболы на графике идти вверх (a>0) ,

или парабола ветвями вниз (a<0) .

Вершина параболы лежит посередине между корнями

Физический смысл дискриминанта:

Если дискриминант больше нуля (D>0) парабола имеет две точки пересечения с осью Ox .
Если дискриминант равен нулю (D=0) то парабола в вершине касается оси абсцисс.
И последний случай, когда дискриминант меньше нуля (D<0) – график параболы принадлежит плоскости над осью абсцисс (ветки параболы вверх), или график полностью под осью абсцисс (ветки параболы опущены вниз).

Неполные квадратные уравнения

Перед тем как перейти к теореме Виета, введем определение. Квадратное уравнение вида x ² + px + q = 0 называется приведенным. В этом уравнении старший коэффициент равен единице. Например, уравнение x ² — 3x — 4 = 0 является приведенным. Всякое квадратное уравнение вида ax ² + bx + c = 0 можно сделать приведенным, для этого делим обе части уравнения на а ≠ 0. Например, уравнение 4x ² + 4x — 3 = 0 делением на 4 приводится к виду: x ² + x — 3/4 = 0. Выведем формулу корней приведенного квадратного уравнения, для этого воспользуемся формулой корней квадратного уравнения общего вида: ax ² + bx + c = 0

Приведенное уравнение x ² + px + q = 0 совпадает с уравнением общего вида, в котором а = 1, b = p , c = q. Поэтому для приведенного квадратного уравнения формула принимает вид:

последнее выражение называют формулой корней приведенного квадратного уравнения, особенно удобно пользоваться этой формулой когда р — четное число. Для примера решим уравнение x ² — 14x — 15 = 0

В ответ запишем уравнение имеет два корня.

Для приведенного квадратного уравнения с положительным справедлива следующая теорема.

Теорема Виета

Если x 1 и x 2 — корни уравнения x ² + px + q = 0, то справедливы формулы:

x 1 + x 2 = — р

x 1 * x 2 = q, то есть сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Исходя из формулы корней приведенного квадратного уравнения имеем:

Складывая эти равенства, получаем: x 1 + x 2 = —р.

Перемножая эти равенства, по формуле разности квадратов получаем:


Отметим, что теорема Виета справедлива и тогда, когда дискриминант равен нулю, если считать, что в этом случае квадратное уравнение имеет два одинаковых корня: x 1 = x 2 = — р /2.

Не решая уравнения x ² — 13x + 30 = 0 найдем сумму и произведение его корней x 1 и x 2 . этого уравнения D = 169 — 120 = 49 > 0, поэтому можно применить теорему Виета: x 1 + x 2 = 13, x 1 * x 2 = 30. Рассмотрим еще несколько примеров. Один из корней уравнения x ² — рx — 12 = 0 равен x 1 = 4. Найти коэффициент р и второй корень x 2 этого уравнения. По теореме Виета x 1 * x 2 = — 12, x 1 + x 2 = — р. Так как x 1 = 4, то 4x 2 = — 12, откуда x 2 = — 3, р = — (x 1 + x 2) = — (4 — 3) = — 1. В ответ запишем, второй корень x 2 = — 3, коэффициент р = — 1.

Не решая уравнения x ² + 2x — 4 = 0 найдем сумму квадратов его корней. Пусть x 1 и x 2 — корни уравнения. По теореме Виета x 1 + x 2 = — 2, x 1 * x 2 = — 4. Так как x 1 ²+ x 2 ² = (x 1 + x 2)² — 2x 1 x 2 , тогда x 1 ²+ x 2 ² =(- 2)² -2 (- 4) = 12.

Найдем сумму и произведение корней уравнения 3x ² + 4x — 5 = 0. Данное уравнение имеет два различных корня, так как дискриминант D = 16 + 4*3*5 > 0. Для решения уравнения воспользуемся теоремой Виета. Эта теорема доказана для приведенного квадратного уравнения. Поэтому разделим данное уравнение на 3.

Следовательно, сумма корней равна -4/3, а их произведение равно -5/3.

В общем случае корни уравнения ax ² + bx + c = 0 связаны следующими равенствами: x 1 + x 2 = — b/a, x 1 * x 2 = c/a, Для получения этих формул достаточно разделить обе части данного квадратного уравнения на а ≠ 0 и применить к полученному приведенному квадратному уравнению теорему Виета. Рассмотрим пример, требуется составить приведенное квадратное уравнение, корни которого x 1 = 3, x 2 = 4. Так как x 1 = 3, x 2 = 4 — корни квадратного уравнения x ² + px + q = 0, то по теореме Виета р = — (x 1 + x 2) = — 7, q = x 1 x 2 = 12. В ответ запишем x ² — 7x + 12 = 0. При решении некоторых задач применяется следующая теорема.

Теорема, обратная теореме Виета

Если числа р , q , x 1 , x 2 таковы, что x 1 + x 2 = — р, x 1 * x 2 = q , то x 1 и x 2 — корни уравнения x ² + px + q = 0. Подставим в левую часть x ² + px + q вместо р выражение — (x 1 + x 2), а вместо q — произведение x 1 * x 2 . Получим: x ² + px + q = x ² — (x 1 + x 2) х + x 1 x 2 = x² — x 1 x — x 2 x + x 1 x 2 = (x — x 1) (x — x 2). Таким образом, если числа р , q , x 1 и x 2 связаны этими соотношениями, то при всех х выполняется равенство x ² + px + q = (x — x 1) (x — x 2), из которого следует, что x 1 и x 2 — корни уравнения x ² + px + q = 0. Используя теорему, обратную теореме Виета, иногда можно подбором найти корни квадратного уравнения. Рассмотрим пример, x ² — 5x + 6 = 0. Здесь р = — 5, q = 6. Подберем два числа x 1 и x 2 так, чтобы x 1 + x 2 = 5, x 1 * x 2 = 6. Заметив, что 6 = 2 * 3 , а 2 + 3 = 5, по теореме, обратной теореме Виета, получаем, что x 1 = 2, x 2 = 3 — корни уравнения x ² — 5x + 6 = 0.

I. Теорема Виета для приведенного квадратного уравнения.

Сумма корней приведенного квадратного уравнения x 2 +px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

x 1 +x 2 =-p; x 1 ∙x 2 =q.

Найти корни приведенного квадратного уравнения, используя теорему Виета.

Пример 1) x 2 -x-30=0. Это приведенное квадратное уравнение ( x 2 +px+q=0) , второй коэффициент p=-1 , а свободный член q=-30. Сначала убедимся, что данное уравнение имеет корни, и что корни (если они есть) будут выражаться целыми числами. Для этого достаточно, чтобы дискриминант был полным квадратом целого числа.

Находим дискриминант D =b 2 — 4ac=(-1) 2 -4∙1∙(-30)=1+120=121=11 2 .

Теперь по теореме Виета сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, т.е. (-p ), а произведение равно свободному члену, т.е. (q ). Тогда:

x 1 +x 2 =1; x 1 ∙x 2 =-30. Нам надо подобрать такие два числа, чтобы их произведение было равно -30 , а сумма – единице . Это числа -5 и 6 . Ответ: -5; 6.

Пример 2) x 2 +6x+8=0. Имеем приведенное квадратное уравнение со вторым коэффициентом р=6 и свободным членом q=8 . Убедимся, что есть целочисленные корни. Найдем дискриминант D 1 D 1 =3 2 -1∙8=9-8=1=1 2 . Дискриминант D 1 является полным квадратом числа 1 , значит, корни данного уравнения являются целыми числами. Подберем корни по теореме Виета: сумма корней равна –р=-6 , а произведение корней равно q=8 . Это числа -4 и -2 .

На самом деле: -4-2=-6=-р; -4∙(-2)=8=q. Ответ: -4; -2.

Пример 3) x 2 +2x-4=0 . В этом приведенном квадратном уравнении второй коэффициент р=2 , а свободный член q=-4 . Найдем дискриминант D 1 , так как второй коэффициент – четное число. D 1 =1 2 -1∙(-4)=1+4=5. Дискриминант не является полным квадратом числа, поэтому, делаем вывод : корни данного уравнения не являются целыми числами и найти их по теореме Виета нельзя. Значит, решим данное уравнение, как обычно, по формулам (в данном случае по формулам ). Получаем:

Пример 4). Составьте квадратное уравнение по его корням, если x 1 =-7, x 2 =4.

Решение. Искомое уравнение запишется в виде: x 2 +px+q=0 , причем, на основании теоремы Виета –p=x 1 +x 2 =-7+4=-3 → p=3; q=x 1 ∙x 2 =-7∙4=-28 . Тогда уравнение примет вид: x 2 +3x-28=0.

Пример 5). Составьте квадратное уравнение по его корням, если:

II. Теорема Виета для полного квадратного уравнения ax 2 +bx+c=0.

Сумма корней равна минус b , деленному на а , произведение корней равно с , деленному на а:

x 1 +x 2 =-b/a; x 1 ∙x 2 =c/a.

Одним из методов решений квадратного уравнения является применение формулы ВИЕТА , которую назвали в честь ФРАНСУА ВИЕТА.

Он был известным юристом, и служил в 16 веке у французского короля. В свободное время занимался астрономией и математикой. Он установил связь между корнями и коэффициентами квадратного уравнения.

Достоинства формулы:

1 . Применив формулу, можно быстро найти решение. Потому что не нужно вводить в квадрат второй коэффициент, затем из него вычитать 4ас, находить дискриминант, подставлять его значение в формулу для нахождения корней.

2 . Без решения можно определить знаки корней, подобрать значения корней.

3 . Решив систему из двух записей, несложно найти сами корни. В приведенном квадратном уравнении сумма корней равна значению второго коэффициента со знаком минус. Произведение корней в приведенном квадратном уравнении равно значению третьего коэффициента.

4 . По данным корням записать квадратное уравнение, то есть решить обратную задачу. Например, этот способ применяют при решении задач в теоретической механике.

5 . Удобно применять формулу, когда старший коэффициент равен единице.

Недостатки:

1 . Формула не универсальна.

Теорема Виета 8 класс

Формула
Если x 1 и x 2 - корни приведенного квадратного уравнения x 2 + px + q = 0 , то:

Примеры
x 1 = -1; x 2 = 3 - корни уравнения x 2 - 2x - 3 = 0.

P = -2, q = -3.

X 1 + x 2 = -1 + 3 = 2 = -p,

X 1 x 2 = -1 3 = -3 = q.

Обратная теорема

Формула
Если числа x 1 , x 2 , p, q связаны условиями:

То x 1 и x 2 - корни уравнения x 2 + px + q = 0 .

Пример
Составим квадратное уравнение по его корням:

X 1 = 2 - ? 3 и x 2 = 2 + ? 3 .

P = x 1 + x 2 = 4; p = -4; q = x 1 x 2 = (2 - ? 3 )(2 + ? 3 ) = 4 - 3 = 1.

Искомое уравнение имеет вид: x 2 - 4x + 1 = 0.

С помощью этой математической программы вы можете решить квадратное уравнение .

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
- с помощью дискриминанта
- с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

$$ x_1 = \frac{8+\sqrt{145}}{81}, \quad x_2 = \frac{8-\sqrt{145}}{81} $$ а не в такой: \(x_1 = 0,247; \quad x_2 = -0,05 \)

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5z +1/7z^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} z + \frac{1}{7}z^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac{4}{9}=0 \)
имеет вид
\(ax^2+bx+c=0, \)
где x - переменная, a, b и c - числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = -7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями .

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x - переменная, a, b и c - некоторые числа, причём \(a \neq 0 \).

Числа a, b и c - коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b - вторым коэффициентом и число c - свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \(a \neq 0 \), наибольшая степень переменной x - квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением . Например, приведёнными квадратными уравнениями являются уравнения
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением . Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \(c \neq 0 \);
2) ax 2 +bx=0, где \(b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \(c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\(x^2 = -\frac{c}{a} \Rightarrow x_{1,2} = \pm \sqrt{ -\frac{c}{a}} \)

Так как \(c \neq 0 \), то \(-\frac{c}{a} \neq 0 \)

Если \(-\frac{c}{a}>0 \), то уравнение имеет два корня.

Если \(-\frac{c}{a} Для решения неполного квадратного уравнения вида ax 2 +bx=0 при \(b \neq 0 \) раскладывают его левую часть на множители и получают уравнение
\(x(ax+b)=0 \Rightarrow \left\{ \begin{array}{l} x=0 \\ ax+b=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=0 \\ x=-\frac{b}{a} \end{array} \right. \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \(b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\(x^2+\frac{b}{a}x +\frac{c}{a}=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2- \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \Rightarrow \)

\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \Rightarrow \) \(\left(x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \Rightarrow \left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \(x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \(x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни - различитель). Его обозначают буквой D, т.е.
\(D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\(x_{1,2} = \frac{ -b \pm \sqrt{D} }{2a} \), где \(D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \(x=-\frac{b}{2a} \).
3) Если D Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x 1 и x 2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\(\left\{ \begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array} \right. \)