Исследовательский проект «История возникновения чисел. «Главное число» человеке. Возникновение числа

Возникновение чисел в нашей жизни не случайность. Невозможно представить себе общение без использования чисел. История чисел увлекательна и загадочна. Человечеству удалось установить целый ряд законов и закономерностей мира чисел, разгадать кое-какие тайны и использовать свои открытия в повседневной жизни. Без замечательной науки о числах – математики – немыслимо сегодня ни прошлое, ни будущее. А сколько ещё неразгаданного!

Древние люди не умели считать. Да и считать им было нечего, потому что предметов, которыми они пользовались – орудий труда, – было совсем немного: один топор, одно копье Постепенно количество вещей увеличивалось, обмен ими усложнялся и возникала потребность в счете. Издавна числа казались людям чем-то таинственным. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства

В наш скоростной быстролётный век – век большого изобилия информации, различных печатных изданий и виртуального мира трудно чем - либо удивить людей. Написать, создать что-либо, да так, чтобы интересно было читать! Итак

С самого раннего детства мы знакомимся с числами. А какие же бывают числа? На этот вопрос я попыталась ответить в своей работе. Моя работа можно - это мини-пособие для ознакомления с таким интересным понятием как «Числа». Возможно, не все подробно, но в своей работе я старалась затронуть все аспекты, связанные с выбранной темой. Этой работой могут воспользоваться те, кто хочет знать о математике больше, чем рядовой школьник.

История развития числа

На первых этапах существования человеческого общества числа служили для примитивного счета предметов, дней, шагов. В первобытном обществе человек нуждался лишь в нескольких первых числа. С развитием цивилизации ему потребовалось изобретать все больше числа, этот процесс продолжался на протяженности многих столетий и требовал напряженного интеллектуального труда. При обмене продуктами появилась необходимость сравнивать числа, возникли понятия больше, меньше, равно. На этом же этапе люди стали складывать числа, затем научились вычитать, делить, умножать. При делении двух натуральных чисел появились дроби, при вычитании – отрицательные числа.

Необходимость выполнять арифметические действия привела к понятию рациональных чисел. В IV в. до н. э. греческие математики открыли несоизмеримые отрезки, длины которых не выражались ни целым, ни дробным числом (например, длина диагонали квадрата со стороной, равной 1). Потребовалась не одна сотня лет, чтобы математики смогли выработать способ записи таких чисел в виде бесконечной непериодической десятичной дроби. Так появились иррациональные числа, которые вместе с рациональными назвали действительными числами.

Но затем выяснилось, что во множестве действительных чисел не имеют решения простейшие квадратные уравнения, например, х2 + 1 = 0. Математики пришли к необходимости расширить понятия числа, чтобы в новом множестве можно было всегда извлечь квадратный корень. Новое множество назвали множеством комплексных чисел, введя понятие мнимой единицы: i2 = – 1.

Выражение вида а + вi назвали комплексным числом. Долгое время многие ученые не признавали их за числа. Только после того, как нашли возможность представить мнимое число геометрически, так называемые мнимые числа получили свое место во множестве чисел.

N – натуральные числа.

Q – рациональные числа.

R – действительные числа.

Комплексными называются числа вида а + вi, где а и в – действительные числа, i – мнимая единица: i2 = – 1. а называется действительной частью, вi – мнимой частью комплексного числа.

Определение. Два комплексных числа называются равными, если равны их действительные части и коэффициенты при мнимых частях, т. е. а + вi = с + di a = c, b = d.

Для комплексных чисел не существует соотношений «больше», «меньше».

Учёные математики, которые внесли

Вклад в развитие теории чисел

Мы живем в мире больших чисел

Задумывались ли вы когда-нибудь о том, сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость тренированного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.

Для сокращения записи больших чисел давно используется система величин, в которой каждая из последующих в тысячу раз больше предыдущей:

1000 единиц – просто тысяча (1000 или 1 тыс.)

1000 тысяч – 1 миллион

1000 миллионов – 1 биллион (или 1 миллиард)

1000 биллионов – 1 триллион

1000 триллионов – 1 квадриллион

1000 квадриллионов – 1 квинтиллион

1000 квинтиллионов – 1 секстиллион

1000 секстиллионов – 1 септиллион

1000 нониллионов – 1 дециллион и т. д.

Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 * 11= 33 нулями. 1. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000.

«Напрасно думают, что ноль играет маленькую роль»

Самуил Яковлевич Маршак

Степень числа – произведение его самого на себя требуемое число раз, которое называется показателем степени (а само число – ее основанием). Например, 3 * 3= 32 (здесь 3 – основание, 2- показатель степени), 2 * 2 * 2= 23, 10 * 10= 102=100, 105= 10 * 10 * 10 * 10 * 10= 100000.

Заметьте, что число нулей степени 10 всегда равно ее показателю:

101=10, 102 =100, 103 =1000 и т. д.

И еще одно: математики во всем мире давно приняли, что любое число в нулевой степени равно единице (а0 =1). При записи больших чисел часто используют степень числа 10.

Единица – 100=1

Тысяча – 103= 1000

Миллион – 106= 1000 000

Биллион – 109= 1000 000 000

Триллион – 1012=1000 000 000 000

Квадриллион – 1015 =1000 000 000 000 000

Квинтиллион – 1018 =1000 000 000 000 000 000

Секстиллион – 1021 = 1000 000 000 000 000 000 000

Септиллион – 1024 = 1000 000 000 000 000 000 000 000

Октиллион - 1027 = 1000 000 000 000 000 000 000 000 000

Теперь приведем несколько интересных сведений:

Радиус Земли – 6400 км.

Длина Земного экватора – около 40 тыс. км.

Площадь Земного шара 510 млн. км.

Среднее расстояние от Земли до Солнца – 150 млн. км.

Диаметр нашей Галактики – 85 тыс. световых лет.

С начала нашей эры прошло немногим более миллиарда секунд.

Число Шахерезады

Существуют числа, носящие имена великих математиков: число Архимеда - , Неперово число – основание натуральных логарифмов е=2, 718281 [Непер Джон (150-1617), шотландский математик, изобретатель логарифмов].

Число, о котором пойдет речь, не менее популярно. Это 1001. Его иногда называют числом Шехерезады, известно каждому, кто читал сказки «Тысяча и одна ночь». Число 1001 обладает рядом интересных свойств:

1. Это самое маленькое натуральное четырехзначное число, которое можно представить в виде суммы кубов двух натуральных чисел: 1001=103+13.

2. Состоит из 77 «злополучных чертовых дюжин». (1001=77*13), из 91 одиннадцатки или 143 семерок (вспомним, что число «7» считалось магическим числом); далее, если будем считать, что год равен 52 неделям, то 1001=143*7=(104+26+13)*7=2 года + ½ года+ ¼ года

3. На свойствах числа 1001 базируется метод определения делимости числа на 7, на 11 и на 13.

Рассмотрим этот метод на примерах:

Делится ли на 7 число 348285?

348285=348*1000+285=348*1000+348-348+285=348*1001-(348-285)

Так как 1001 делится на 7, то чтобы 348285 делилось на 7, достаточно, чтобы на 7 делилась разность 348-285. Так как 348-285=63, то 348285 делится на 7.

Таким образом, чтобы узнать, делится ли число на 7 (на 11 или 13), необходимо от этого числа без последних трех цифр отнять число из трех последних цифр; если эта разность делится на 7 (11 или 13), то и заданное число также делится на 7 (11 или 13).

Задумайтесь, может и вы найдёте сказочное число. Внесите свой вклад в царицу наук - МАТЕМАТИКУ!!!

Взаимно- обратные числа

Обратное число́ (обратное значение, обратная величина) - это число, на которое надо умножить данное число, чтобы получить единицу. Два таких числа называются взаимно обратными.

Примеры: 5 и 1/5, −6/7 и −7/6, π и 1 / π

Для всякого числа а, не равного нулю, существует обратное 1/a.

На земном шаре обитают птицы – безошибочные составители прогноза погоды на лето. Название этих птиц зашифровано примерами, записанными на доске. Последовательно решив примеры и заменив ответы буквами, вы прочтёте название птиц – метеорологов.

1. 17/8 5/6 6/5;

2. 3,4 7/3 3/7;

3. 11/12 5,6 12/11;

4. 2,5 0,4 3;

5. 2/3 0,1 3/2;

6. 41/2 1/2 2;

8. 11/12 31/3 12/11.

17/8 31/3 0,1 3,4 3 41/2 5,6 1

ф о и л м н а г

Простые числа

«Простые числа остаются всегда готовыми ускользнуть от исследования»

Если записать натуральные числа в ряд, и в тех местах, где стоят простые числа, зажечь фонарики, то не нашлось в этом ряду места, где была бы сплошная темнота. Фонарики расположились бы очень причудливо. Между ними есть только одно число - четное, это 2, а остальные нечетные. 2 и 3 последовательные натуральные числа, наименьшие простые -такая пара единственная, где одно число четное, а другое нечетное.

1, 2, 3,4 ,5 ,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Два последовательных нечетных числа, каждое из которых является простым – называются числами – близнецами.

Первые простые числа-близнецы:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61),

(71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193),

(197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349),

(419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619),

(641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

Греческий ученый Евклид в своей книге «Начала» утверждал следующее: «Самого большого числа не существует». До сих пор неизвестно, есть ли самые большие числа-близнецы. И до сих пор нет ответа на вопрос: существует ли бесконечно много пар простых чисел-близнецов.

Первым глубокие исследования о том, как разбросаны простые числа среди натуральных, получил русский математик Пафнутий Львович Чебышев. Но до сих пор математики не знают формулы, с помощью которой можно получить простые числа одно за другим, нет даже формулы, дающей только простые числа.

Над тем, как составить список простых чисел, задумался живущей в 3 веке до нашей эры александрийский ученый Эратосфен. Его имя вошло в науку в связи с методом отыскания простых чисел. В древности писали на восковых табличках острой палочкой-стилем, поэтому Эратосфен «выкалывал» составные числа острым концом стиля. После выкалывания всех составных чисел таблица напоминала решето. Отсюда и название «решето Эратосфена». Древнегреческих ученых заинтересовало: сколько может быть всех простых чисел в натуральном ряду.

В 1750 году Леонард Эймер установил, что число 231 – 1 является простым. Оно оставалось самым большим из известных простых чисел более ста лет. В 1876 году французский математик Лукас установил, что огромное число

2127 – 1 = 170. 141. 183. 460. 469. 231. 731. 678. 303. 715. 884. 105. 727 также простое. Оно содержит 39 цифр. Для его вычисления были использованы механические настольные счетные машины. В 1957 году было найдено следующее простое число: 23217- 1. А простое число 244497-1 состоит из 13000 цифр.

Рациональные числа

Рациональное число (лат. ratio - отношение, деление, дробь) - число, представляемое обыкновенной дробью, где m - целое число, а n - натуральное число. При этом число m называется числителем, а число n - знаменателем дроби. Такую дробь следует интуитивно понимать, как результат деления m на n, даже если нацело разделить не удаётся. В реальной жизни можно использовать рациональные числа для счёта частей некоторых целых, но делимых объектов, например, тортов или других продуктов, разрезаемых на несколько частей перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Совершенные числа

Совершенное число́ (др. греч. ἀριθμὸς τέλειος) - натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого́ числа).

Первое совершенное число - 6 (1 + 2 + 3 = 6), следующее - 28 (1 + 2 + 4 + 7 + 14 = 28). По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Третье совершенное число - 496, четвёртое - 8128, пятое - 33 550 336, шестое - 8 589 869 056 (последовательность A000396 в OEIS).

«Перестаньте отыскивать интересные числа!

Оставьте для интереса хотя бы одно неинтересное число!»

Из письма читателя Мартину Гарднеру

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные и близко связанные с ними дружественные числа.

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число). Наименьшее из совершенных чисел 6 равно сумме трех своих делителей 1, 2 и 3. Следующее совершенное число 28=1+2+4+7+14. Ранние комментаторы Ветхого завета, пишет в своей книге «Математические новеллы» Мартин Гарднер, усматривали в совершенстве чисел 6 и 28 особый смысл. Разве не за 6 дней был сотворен мир, восклицали они, и разве Луна обновляется не за 28 суток?

Первым крупным достижением теории совершенных чисел была теорема Евклида о том, что число 2n-1(2n-1) - четное и совершенное, если число 2n-1 - простое 1. Лишь две тысячи лет спустя Эйлер доказал, что формула Евклида содержит все четные совершенные числа. Поскольку не известно ни одного нечетного совершенного числа (у читателей есть шанс найти его и прославить свое имя), то обычно, говоря о совершенных числах, имеют в виду четное совершенное число.

Приглядевшись к формуле Евклида, мы увидим связь совершенных чисел с членами геометрической прогрессии 1, 2, 4, 8, 16, Эту связь лучше проследить на примере древней легенды, согласно которой Раджа обещал изобретателю шахмат любую награду. Изобретатель попросил положить на первую клетку шахматной доски одно зерно пшеницы, на вторую клетку - два зерна, на третью - четыре, на четвертую - восемь и так далее. На последнюю, 64-ю клетку, должно быть насыпано 263 зерен, а всего на шахматной доске окажется «кучка» из 264-1 зерен пшеницы. Это больше, чем собрано во всех урожаях за историю человечества.

Если на каждой клетке шахматной доски мы напишем, сколько зерен пшеницы причиталось бы за нее изобретателю шахмат, а затем снимем с каждой клетки по одному зерну, то число оставшихся зерен будет точно соответствовать выражению, стоящему в скобках в формуле Евклида. Если это число простое, то, умножив его на число зерен на предыдущей клетке (то есть на 2n-1), мы получим совершенное число! Простые числа вида 2n-1 называются числами Мерсенна в честь французского математика XVII века. На шахматной доске со снятыми по одному зерну с каждой клетки есть девять чисел Мерсенна, соответствующих девяти простым числам, меньших 64, а именно: 2, 3, 5, 7, 13, 17, 19, 31 и 61. Умножив их на число зерен на предыдущих клетках, мы получим девять первых совершенных чисел. (Числа n=29, 37, 41, 43, 47, 53, и 59 не дают числа Мерсенна, т. е. соответствующие им числа 2n-1 составные.)

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел. Например, все совершенные числа треугольные. Это значит, что, взяв совершенное число шаров, мы всегда сможем сложить из них равносторонний треугольник. Из той же формулы Евклида следует другое любопытное свойство совершенных чисел: все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 13+33+53+ Еще более удивительно, что сумма величин, обратных всем делителям совершенного числа, включая его самого, всегда равна 2. Например, взяв делители совершенного числа 28, получим:

Кроме того, интересны представление совершенных чисел в двоичной форме, чередование последних цифр совершенных чисел и другие любопытные вопросы, которые можно найти в литературе по занимательной математике. Главные из них - наличие нечетного совершенного числа и существование наибольшего совершенного числа - до сих пор не решены.

От совершенных чисел повествование непременно перетекает к дружественным числам. Это такие два числа, каждое из которых равно сумме делителей второго дружественного числа. Наименьшие из дружественных чисел 220 и 284 были известны еще пифагорейцам, которые считали их символом дружбы. Следующая пара дружественных чисел 17296 и 18416 была открыта французским юристом и математиком Пьером Ферма лишь в 1636 году, а последующие числа находили Декарт, Эйлер и Лежандр. Шестнадцатилетний итальянец Никколо Паганини (тезка знаменитого скрипача) в 1867 году потряс математический мир сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.

Дружественные числа

Дружественные числа - два натуральных числа́, для которых сумма всех собственных делителей первого числа́ равна второму числу и сумма всех собственных делителей второго числа́ равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе.

Ниже приведены пары дружественных чисел, меньших 130 000.

6. 10744 и 10856

7. 12285 и 14595

8. 17296 и 18416

9. 63020 и 76084

10. 66928 и 66992

11. 67095 и 71145

12. 69615 и 87633

13. 79750 и 88730

14. 100485 и 124155

15. 122265 и 139815

16. 122368 и 123152

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругой он обручился;

С нею пять лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил,

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Сколько лет прожил Диофант?

Фигурные числа

Давным-давно, помогая себе при счете камушками, люди обращали внимание на правильные фигуры, которые можно выложить из камушков. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники, мы обнаружим, что получаются все четные числа. Можно выкладывать камни в три ряда: получатся числа, делящиеся на три. Всякое число, которое на что-нибудь делится, можно представить таким прямоугольником, и только простые числа не могут быть "прямоугольными". А что если складывать треугольник? Треугольник получается из трех камушков: два в нижнем ряду, один в верхнем, в ложбинке, образованной двумя нижними камнями. Если добавить камень в нижний ряд, появится еще одна ложбинка; заполнив ее, мы получим ложбинку, образованную двумя камушками второго ряда; положив в нее камень, мы наконец получим треугольник. Итак, нам пришлось добавить три камушка. Следующий треугольник получится, если добавить четыре камушка. Выходит, что на каждом шаге мы добавляем столько камней, сколько их становится в нижнем ряду. Если теперь считать, что один камень - это тоже треугольник, самый маленький, у нас получится такая последовательность чисел: 1, 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15 и т. д. Итак, фигурные числа - это общее название чисел, геометрическое представление которых связано с той или иной геометрической фигурой. Числа древними греками, а вместе с ними Пифагором и пифагорейцами мыслились зримо, в виде камешков, разложенных на песке или на счетной доске - абаке.

По этой причине греки не знали нуля, т. к. его невозможно было "увидеть". Но и единица еще не была полноправным числом, а представлялась как некий "числовой атом", из которого образовывались все числа Пифагорейцы называли единицу "границей между числом и частями", т. е. между целыми числами и дробями, но в то же время видели в ней "семя и вечный корень". Число же определялось как множество, составленное из единиц. Особое положение единицы как "числового атома", роднило ее с точкой, считавшейся "геометрическим атомом". Вот почему Аристотель писал: "Точка есть единица, имеющая положение, единица есть точка без положения". Т. о. пифагорейские числа в современной терминологии - это натуральные числа. Числа камешки раскладывались в виде правильных геометрических фигур, эти фигуры классифицировались. Так возникли числа, сегодня именуемые фигурными. Древние греки, когда им приходилось умножать числа, рисовали прямоугольники; результатом умножения трех на пять был прямоугольник со сторонами три и пять. Это - развитие счета на камушках. Множество закономерностей, возникающих при действиях с числами, были обнаружены древнегреческими учеными при изучений чертежей. И долгие века лучшим подтверждением справедливости таких соотношений считался способ геометрический, с прямоугольниками, квадратами, пирамидами и кубами. В V - IV веках до нашей эры ученые, комбинируя натуральные числа, составляли из них затейливые ряды, придавая элементам этих рядов то или иное геометрическое истолкование. С их помощью можно выложить правильные геометрические фигуры: треугольники, квадраты, пирамиды и т. д. Увлеклись, причем независимо друг от друга, нахождением таких чисел Б. Паскаль и П. Ферма.

Даже в XVII века, когда была уже хорошо развита алгебра с обозначениями величин буквами, со знаками действий, многие считали ее варварской наукой, пригодной для низменных целей- бытовых расчетов, вспомогательных вычислений, - но никак не для благородных научных трудов. Один из крупнейших математиков того времени, Бонавентура Кавальери, пользовался алгеброй, ибо вычислять с ее помощью проще, но для обоснования своих научных результатов все алгебраические выкладки заменял рассуждениями с геометрическими фигурами.

Среди фигурных чисел различают: Линейные числа (т. е. простые числа) - числа, которые делятся только на единицу и на самих себя и, следовательно, представимы в виде последовательности точек, выстроенных в линию: (линейное число 5)

Плоские числа - числа, представимые в виде произведения двух сомножителей: (плоское число 6)

Телесные числа, выражаемые произведением трех сомножителей: (телесное число 8)

Треугольные числа: (треугольные числа 3,6,10)

Квадратные числа: (квадратные числа 4,9,16)

Пятиугольные числа:(пятиугольные числа 5,12)

Именно от фигурных числе пошло выражение "Возвести число в квадрат или куб".

Представление чисел в виде правильных геометрических фигур помогало пифагорейцам находить различные числовые закономерности. Например, чтобы получить общее выражение для n-угольного числа, которое есть не что иное, как сумма n натуральных чисел 1+2+3+. +n, достаточно дополнить это число до прямоугольного числа n(n+1) и увидеть (именно глазами!) равенство

Написав последовательность квадратных чисел, опять-таки легко увидеть глазами выражение для суммы n нечетных чисел:

Наконец, разбивая n-е пятиугольное число на три (n-1) треугольных (после чего остается ещё n "камешков"), легко найти его общее выражение

Разбиением на треугольные числа получается и общая формула для n-го k-угольного числа:

При k=3 мы получаем треугольные числа, а k=4 - квадратные числа и т. д.

Аналогично можно представить число в виде прямоугольника. Для числа 12 это можно сделать многими способами (рис.), а для числа 13 - лишь расположив все предметы в одну линию. Такое древние не считали прямоугольным.

Таким образом, прямоугольными числами являются все составные числа, а не прямоугольными - простые числа. Фигурное представление чисел помогало пифагорейцам открывать законы арифметических операций, а также легко переходить к числовой характеристике геометрических объектов - измерению площадей и объемов.

Так, представляя число 10 в двух формах: 5*2=2*5, легко "увидеть" переместительный закон умножения: a*b=b*a. В том же числе 10: (2+3)*2=2*2+3*2=10 можно "разглядеть" и распределительный закон сложения относительно умножения: (a+b)c=ac+bc.

Наконец, если "камешки", образующие фигурные числа, мыслить в виде равных по площади квадратиков, то, укладывая их в прямоугольное число ab:. автоматически получаем формулу для вычисления площади прямоугольника: S=ab. К фигурным числам также относятся пирамидальные числа, которые получаются, если шарики складывать пирамидой, как раньше складывали ядра около пушки.

Нетрудно заметить, что пирамидальное число равно сумме всех треугольных чисел - от первого до n-го. Формула для вычисления n-го пирамидального числа имеет вид:

«Числовые забавы »

Это число, прежде всего, замечательно тем, что определяет число дней в не високосном году. При делении на 7 оно даёт в остатке 1, эта особенность числа 365 имеет большое значение для нашего семидневного календаря.

Существует ещё одна особенность числа 365:

365=10×10×11×11×12×12, то есть 365 равно в сумме квадратов трёх последовательных чисел, начиная с 10:

10²+11²+12²=100+121+144=365.

Но и это ещё не всё. Число 365 равно сумме квадратов двух следующих чисел, 13 и 14:

13²+14²=169+196=365.

Если человек не знает выше изложенных свойств числа 365, то он при решении примера:

10²+11²+12²+13²+14²

365 начнёт выполнять громоздкие вычисления.

Например:

10²+11²+12²+13²+14² ‗ 100+121+144+169+196 ‗ 221+313+196 ‗ 730

Человек же знающий решит этот пример в уме моментально и получит в ответе 2.

10²+11²+12²+13²+14² ‗ 365+365 ‗ 730

Следующее число, которое я буду описывать – это 999.

Оно намного удивительнее, чем его перевёрнутое изображение – 666 –«звериное число»

Апокалипсиса, вселяющее страх в суеверных людей, но оно по своим арифметическим свойствам ничем не выделяется среди других чисел.

Особенность числа 999 в том, что его можно легко умножить на трёхзначные числа. Тогда получится шестизначное произведение: первые три цифры его есть умножаемое число, уменьшенное на единицу, а остальные три цифры являются дополнениями первых трех до 9. Например,

Стоит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:

573×999=573×(1000-1)= 573

Зная эту особенность, мы можем мгновенно умножить любое трёхзначное число на 999.

Например:

947×999=946053, 509×999=508491, 981×999=980019,

543×999=542457, 167×999=166833, 952×999=951048 и т. п.

А так как 999=9×111=3×3×3×37,то вы можете описать целые столбцы шестизначных чисел, кратных 37. Не знакомый же со свойствами числа 999, этого сделать не сможет.

1. Число 1001

Сначала рассмотрим число 1001. Это число сказок, которое царица Шехерезада рассказывала царю Шахрияру.

Число 1001 с первого взгляда кажется самым обыкновенным. Его можно разложить на три последовательных простых множителя 7, 11 и 13. Следовательно, оно является их произведением.

Но в том, что 1001=7×11×13 нет ничего интересного. Замечательно то, что если его умножить на любое трехзначное число, то в результате получится тоже самое число, записанное дважды. Нужно применить распределительный закон умножения.

Разложим 1001 на сумму 1000+1.

Например:

247×1001=247×(1000+1)=247×1000+247×1=247000+247=247247

Число 111111

Следующее число, о котором я хочу рассказать – это 111 111.

Благодаря знакомству со свойствами числа 1001 мы сразу видим, что

111 111=111×1001

Но мы знаем, что

111=3×37, 1001=7×11×13.

Отсюда следует, что наша новая числовая диковинка, состоящая из одних единиц, представляет собой произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число, 111 111.

3×(7×11×13×37)=3×37037=111 111

7×(3×11×13×37)=7×15873=111 111

11×(3×7×13×37)=11×10101=111 111

13×(3×7×11×37)=13×8547=111 111

37×(3×7×11×13)=37×3003=111 111

(3×7)×(11×13×37)=21×5291=111 111

(3×11)×(7×13×37)=33×3367=111 111

(3×13)×(7×11×37)=39×2849=111 111

(3×37)×(7×13×11)=111×1001=111 111

(7×3)×(11×13×37)=21×5291=111 111

(7×11)×(3×13×37)=77×1443=111 111

(7×13)×(11×3×37)=91×1221=111 111

(7×37)×(11×3×13)=259×429=111 111

(11×13)×(7×37×3)=143×777=111 111

(37×11)×(13×7×3)=407×273=111 111

«Фокус с числом»

Арифметические фокусы – честные, добросовестные фокусы. Здесь никто никого не стремится обмануть, ввести транс или усыпить внимание зрителя. Чтобы выполнить такой фокус, не нужны, ни чудодейственная ловкость рук, ни изумительное проворство движений, ни какие – либо другие артистические способности, требующие иногда многолетних упражнений. Кружок товарищей, не посвящённых в математические тайны можно поразить следующими фокусами.

Фокус № 1.

Запишите число 365 два раза: 365 365.

Разделите полученное число на 5: 365 365÷5=73 0 73.

Разделите полученное частное на 73: 73 0 73÷73=1001.

У вас получится число Шехерезады, то есть 1001.

Разгадка фокуса, очень проста: число 365=5×73. То есть число 365365 мы делим на 365 и получаем в ответе 1001.

Фокус № 2.

Пусть кто-нибудь напишет любое трехзначное число, и затем к нему припишет еще раз это же самое число. Получится шестизначное число, состоящее из повторяющихся цифр.

Предложите своему товарищу разделить это число в тайне от вас на 7. Результат нужно передать соседу, который должен разделить его на 11. Полученный результат передается следующему ученику, которого вы просите разделить это число на 13.

Результат третьего деления вы, не глядя, вручаете первому товарищу. Это и есть задуманное число.

Этот фокус объясняется очень просто. Если приписать к трехзначному числу его само – значит умножить его на 1001, или на произведение 7×11×13=1001. Шестизначное число, которое ваш товарищ получит после того, как припишет к заданному числу его само, должно будет делиться без остатка и на 7, и на 11, и на 13.

Фокус № 3.

Запишите любую цифру три раза подряд. Полученное число разделите на 37 и на 3. И у вас получится в ответе ваша цифра.

Разгадка: когда мы делим трехзначное число, записанное тремя одинаковыми цифрами вначале на 37, а затем на 3,то мы, не замечая, делим на 111.

Фокус № 4.

Число 111 111 так же можно использовать для проделывания фокусов, как и число 1001. В данном случае надо предлагать товарищу число однозначное, и попросить записать его уже шесть раз подряд. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. п. Это дает возможность очень разнообразить выполнение фокуса.

Например: предложите своим товарищам задумать любую цифру, кроме нуля. Нужно умножить ее на 37. Затем умножить на 3. Результат приписать еще раз справа. Полученное число разделить на первоначально задуманную цифру.

Получилось число 111 111.

Разгадка фокуса основана на свойстве числа 111 111. Когда мы умножаем его на 1001 (со свойствами числа 1001 мы познакомились в предыдущей главе) и получилось задуманное число, записанное в начале. Далее при делении на задуманное число явно получается шесть единиц.

Фокус № 5.

Пусть ваш товарищ запишет любое трехзначное число. Справа к нему нужно приписать три нуля. От шестизначного числа предложите отнять первоначальное трехзначное. Затем попросите товарища разделить на задуманное, полученный результат. Частное нужно разделить на 37.

Получилось число 27.

Секрет фокуса понять просто. Он основан на свойствах числа 999.

Число 999 является произведением четырех простых множителей:

3×3×3×37=999, а, следовательно, 999÷37=27

Когда умножают на него трехзначное число, получается результат, состоящий из двух половин: первая – это умножаемое число, уменьшенное на единицу, а вторая – результат вычитания первой половины из множителя.

Фокус № 6.

Число 111 111 111: можно также использовать для наших числовых фокусов:

Спросим у одноклассника его любимую цифру (от 1 до 9).

Попросим эту цифру умножить на 9, а затем полученное произведение умножить на число 123456789. В результате получится число, состоящее из любимых цифр одноклассника.

Например:

5 – это любимая цифра ученика, тогда

45×123456789=555 555 555 т. е. 9×123456789=111 111 111

Заключение

Я думаю, что моя работа является мини-пособием для изучения числового разнообразия. Интересные способы вычисления чисел очень могут помочь в школе, в вузе, на работе, и вообще в жизни. Так в кругу товарищей можно загадывать интересные арифметические фокусы без обманов и волшебства. Исходя из всего вышесказанного, я делаю вывод, что эти и многие другие числовые диковинки желательно знать каждому. Эти знания обязательно понадобятся в жизни!

Множество простых и привычных вещей, с которыми мы ежедневно сталкиваемся, очень часто хранят в себе загадки и факты. Например, вам наверняка будет интересно узнать, как появились цифры, кто их придумал, и почему они имеют именно такой вид.

История возникновения цифр

Первобытные люди, еще не придумав цифры, считали при помощи пальцев рук и ног. Загибая и разгибая пальцы, люди производили сложение и вычитание. Поэтому, существует мнение, что счет десятками произошел именно от количества пальцев на руках и ногах.

Затем в процессе эволюции, люди начали использовать вместо пальцев узелки на веревке, палочки, камушки, или зарубки на коре. Это значительно облегчало счет, однако большие числа показать и сосчитать, таким образом, было не возможно. Поэтому люди придумали изображать числа знаками (точки, черточки, галочки).

Откуда появились цифры «арабскими» знаками, историки точно не знают, однако достоверно известно, что современные числа мы имеем благодаря индийским астрономам и их расчетам, которые сохранились в многочисленных документах. Поэтому возможно, что современная система счисления - это индийское изобретение.

Как изменялись цифры

Арабский учёный Мухаммед ибн Мусса аль - Хорезми впервые использовал индийскую систему нумерации. Он упростил ее и разработал обоснованную систему начертания цифр. Так цифры (1,2,3….) стали обозначаться соответствующим количеством углов. Многие из чисел уже тогда были похожи на цифры, которые мы сейчас применяем.

В середине VIII века к знакам, представляющим собой числа, были введены точка, а затем кружочек, который со временем стал обозначать нуль. Ученые считают, что нуль является важнейшим открытием в математике, так как именно этот знак послужил образованию десятичной системы.

Со временем знаки имели изменения, они становились более округлыми, появлялись новые черточки и символы, с помощью которых становилось проще выражать какие либо значения.

В Европе арабские цифры получили распространение благодаря итальянским купцам. Математик Леонардо Фибоначчи ознакомил купцов с арабской нумерацией, которая оказалась очень удобной и легкой в применении. Таким образом, система счисления индийско-арабскими цифрами стала самой популярной по всему миру.

Сначала были…пальцы. Весьма универсальное, удобное и сподручное средство для счёта. Его используют и до сих пор, правда, лишь в том случае, если нужно показать небольшое, ограниченное одним десятком число (здесь учитываем лишь возможности рук, пальцы ног не в счёт). Не удивительно, что очень быстро назрела потребность в других, более совершенных символах счёта.

У первобытных народов существовало развитой системы счисления. Еще в ХIХ веке у многих племен Австралии и Полинезии было только два обозначения - для числа "один" и для числа "два". Эти обозначения комбинировали. Число "три" они называли "два один", число "четыре"- "два и два", число "пять"- "два, два и один", число "шесть"-"два, два и два". а числа, большие шести, они не различали и называли словом "много".

Первое подобие цифр возникло около пяти тысяч лет назад в Египте и Месопотамии и представляло собой засечки на дереве или камнях. Египетские жрецы использовали для письма папирус, а в Месопотамии для этих целей служила мягкая глина. Цифры тех времён обозначались чёрточками для единиц и различными другими метками для десятков и более высоких порядков.

Интересно то, что записи носили не только счётный характер, но и математический: древние египтяне, как известно, достигли потрясающих высот в арифметике и геометрии. Когда появились иероглифы, цифры стали записывать через них.

Следующий этап в истории цифр принадлежит древним римлянам. Изобретенная ими система исчисления основана на использовании букв для отображения чисел. Так, они применяли в своей системе буквы "I", "V", "L", "C", "D", и "M". цифра число римская двоичная

Не всем для записи чисел понадобилось столько символов. Например, майя в первом тысячелетии нашей эры писали любое число, используя лишь три знака: точку, линию и эллипс. Точка означала единицу, линия имела значение пяти, а эллипс, находясь под любым из этих знаков, увеличивал его значение в двадцать раз. Подобная минимизация отнюдь не приводила к упрощению записи: для обозначения того или иного числа приходилось использовать длинные ряды символов.

Современные привычные для нас цифры имеют арабское происхождение. Хотя арабы в свою очередь заимствовали их у индусов, видоизменив их и приспособив к своему письму. Характер написания каждой из девяти арабских цифр хорошо прослеживается, если записать их в "угловатой" форме. Количество углов каждой цифры соответствует количеству, которое эта цифра обозначает. Привычные нам формы цифр более округлые. Это влияние скорописи: так цифры записывать быстрее и удобнее.

Десятичная система, которой широко пользуется в настоящее время во всем мире, более совершенна. Вместо палочек, взятых от одной до девяти, используют цифры 1, 2, 3, 4, 5, 6, 7, 8, 9. Для обозначения десятков, сотен и т.д. не нужны новые значки, так как те же цифры используют и для записи десятков, сотен и т.д. Одна и та же цифра имеет различные значения в зависимости от места (позиции), где она записана. Благодаря этому свойству современную систему счисления называют позиционной. Десятичная позиционная система счисления позволяет записывать сколь угодно большие натуральные числа.

Народы пришли к этой системе постепенно. Она зародилась в Индии в V веке. В IХ веке ею уже владели арабы, в Х она дошла до Испании, а в ХII веке появилась в других странах Европы, но широкое распространение получила в ХVI веке. Долгое время развитие позиционной системы счисления тормозилось отсутствием в ней числа и цифры нуль. Только после введения нуля система стала совершенной.

В России десятичная система счисления начала распространяться в ХVII веке. В 1703 году был издан первый печатный учебник математики - "Арифметика" Л.Ф. Магницкого, в котором все вычисления велись в десятичной системе записи чисел.

До этого числа записывали буквами славянского алфавита. Числа от 1 до 9 записывали так:

Над одной или несколькими буквами ставили особый знак (титло), чтобы подчеркнуть, что полученная запись не буква, не слово, а число:


Интересно, что числа от 11 (один-на-десять) до 19 (девять-на-десять) записывали так же, как говорили. То есть "цифру" единиц ставили до "цифры" десятков.

В некоторых странах использовались системы счисления с другими основаниями -5, 12, 20, 60. Например, древняя вавилонская система счисления была шестидесятеричная. Следы этой системы сохранились сейчас в единицах измерения времени:

1 ч=60 мин, 1 мин=60 с.

Примером непозиционной системы счисления без нуля может служить римская система. В ней числа записывают с помощью следующих цифр:

I=1, V=5, X=10, L=50, C=100, D=500, M=1000.

Если меньшая цифра стоит после большей, то она прибавляется к большей: ХV=15, ХVI=16. Если меньшая цифра стоит перед большей, то она вычитается из большей: IV=4, IХ=40, ХС=90, СD=400, CM=900. В других случаях правило вычитания не применяется. Числа от 1 до 21 обозначают так:

I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXI.


Используя римскую систему счисления, запишем год выхода "Арифметики" Л.Ф. Магницкого-MDCCIII. Это 1000+500+200+3=1703 год.

Римскую систему нумерации используют и сейчас для обозначения веков, глав в книгах и т.п.

В электронно-вычислительных машинах используется двоичная система счисления, в которой всего две цифры 0 и 1. Для примера запишем в двух системах числа от 0 до 9.

Таблицы сложения и умножения для однозначных чисел двоичной системы счисления очень просты.

Работу выполнила: Кожина Анна 5 класс Руководитель: Попкова Наталья Григорьевна учитель математики П. Большая Ижора 2013 год

Можно ли представить мир без чисел?

Число одно из основных понятий математики, позволяющее выразить результаты счета или измерения.

Люди так часто пользуются числами и счетом, что трудно даже представить себе, что они существовали не всегда, а были изобретены человеком.

Скачать:

Предварительный просмотр:

Секция: математика

МОУ Большеижорская СОШ

Тема проекта:

История возникновения чисел

Работу выполнила:

Кожина Анна 5 класс

Руководитель:

Попкова Наталья Григорьевна

учитель математики

П. Большая Ижора

2013 год

  1. Введение стр. 3
  2. Как появились цифры и числа стр. 4
  3. Арифметика каменного века стр. 6
  4. Числа начинают получать имена стр. 8
  5. Римские цифры стр. 10
  6. Цифры русского народа стр. 12
  7. Самые натуральные числа стр. 14
  8. Системы счисления стр. 15
  9. Заключение стр. 18
  10. Литература стр. 19

Введение

Можно ли представить мир без чисел?

Число одно из основных понятий математики, позволяющее выразить результаты счета или измерения.

Люди так часто пользуются числами и счетом, что трудно даже представить себе, что они существовали не всегда, а были изобретены человеком.

Цель:

доказать, что числа появились в давние времена.

Задачи:

1.установить где, когда и кем были придуманы первые числа;

2. выявить какие бывают системы счисления;

3. научиться изображать цифры теми способами, которыми пользовались наши предки.

Актуальность темы:

без знания прошлого нельзя понять настоящее.

Кто хочет ограничиться настоящим,

без знания прошлого,

тот никогда его не поймет…

Г.В.Лейбниц

В повседневной жизни нас повсюду окружают числа, поэтому интересно выяснить, когда появились первые числа, историю их развития.

  1. Как появились цифры и числа

Ученые считают, что числа зародилась еще в доисторические времена, когда человек научился считать предметы. Но знаки для обозначения чисел появились значительно позже: их изобрели шумеры - народ, живший в 3000-2000 гг. до н. э. в Месопотамии (ныне в Ираке).

История гласит, что на табличках из глины они выдавливали клинообразные черточки, а потом изобрели знаки. Некоторые клинописные знаки обозначали числа 1, 10, 100, то есть были цифрами, остальные числа записывались посредством соединения этих знаков.

Пользование цифрами облегчало счет: считали дни недели, головы скота, размеры земельных участков, объемы урожая. Вавилоняне , пришедшие в Месопотамию после шумеров, унаследовали многие достижения шумерской цивилизации - сохранились клинописные таблички с переводом одних единиц измерения в другие.

Пользовались цифрами и древние египтяне – об этом свидетельствует математический папирус Ринда , названный по имени английского египтолога, который приобрел его в 1858 г. в египетском городе Луксоре .

На папирусе записаны 84 математические задачи с решениями. Судя по историческому документу, египтяне пользовались такой системой цифр, в которой число обозначалось суммой значений цифр . Для обозначения некоторых чисел (1, 10, 100 и т. д.) возник отдельный иероглиф . При записи какого-то числа эти иероглифы писали столько раз, сколько в этом числе единиц соответствующего разряда.

Сходная система счисления была у римлян ; она оказалась одной из самых долговечных: иногда ею пользуются и сейчас.

У ряда народов (древние греки, финикийцы) цифрами служили буквы алфавита .

История гласит, что прообразы современных арабских цифр появились в Индии не позже V в.

Но индийские цифры в X-XIII вв. попали в Европу благодаря арабам, отсюда и возникло название - «арабские».

Большая заслуга в распространении и возникновении индийских цифр в арабском мире принадлежала трудам двух математиков: среднеазиатского ученого Хо- резми (ок. 780-ок. 850) и араба Кинди (ок. 800- ок. 870). Хорезми , живший в Багдаде, написал арифметический трактат об индийских цифрах, который стал известен в Европе в переводе итальянского математика Леонардо Пизанского (Фибоначчи). Текст Фибоначчи сыграл решающую роль в том, что арабо-индийская система записи чисел укоренилась на Западе .

В этой системе значение цифры зависит от ее положения в записи (так, в числе 151 цифра 1 слева имеет значение 100, а справа – 1).

Арабское название нуля – сифр – стало словом «цифра». Широкое распространение в Европе арабские цифры получили со второй половины XVв.

  1. Арифметика каменного века


Древние люди добывали себе пищу главным образом охотой. Чтобы добыча не ушла, её надо было окружить, ну вот хотя бы так: пять человек справа, семь сзади, четыре слева. Тут уж без счёта никак не обойдёшься! И вождь первобытного племени справлялся с этой задачей. Даже в те времена, когда человек не знал таких слов, как «пять» или «семь», он мог показать числа на пальцах рук.
Есть и сейчас на земле племена, которые при счёте не могут обойтись без помощи пальцев. Вместо числа пять они говорят «рука», десять – «две руки», а двадцать – «весь человек», - тут уж присчитываются и пальцы ног.
Пять - рука; Шесть - один на другой руке; Семь - два на другой руке; Десять - две руки, полчеловека; Пятнадцать - нога; Шестнадцать - один на другой ноге; Двадцать - один человек; Двадцать два - два на руке другого человека; Сорок - два человека; Пятьдесят три - три на первой ноге у третьего человека.
Раньше люди чтобы пересчитать стадо из 128 оленей должны были взять семь человек.
Так люди начинали считать, пользуясь тем, что им дала сама природа – собственной пятернёй. Часто говорят: «Знаю, как свои пять пальцев». Не с того ли времени пошло это выражение, когда знать, что пальцев пять, значило то же, что уметь считать?

Несколько десятков лет назад ученые-археологи обнаружили стойбище древних людей. В нем они нашли волчью кость, на которой 30 тысяч лет тому назад какой-то древний охотник нанес пятьдесят пять зарубок. Видно было, что, делая эти зарубки, он считал по пальцам. Узор на кости состоял из одиннадцати групп, по пять зарубок в каждой. При этом первые пять групп он отделил от остальных длинной чертой.

Много тысячелетий прошло с того времени. Но и сейчас швейцарские крестьяне, отправляя молоко на сыроварню, отмечают число фляг такими зарубками.

Первыми понятиями математики были "меньше", "больше" и "столько же". Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

Чтобы с успехом заниматься сельским хозяйством, понадобились арифметические знания . Без подсчета дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбары.

И вот более восьми тысяч лет назад древние пастухи стали делать из глины кружки - по одному на каждую овцу. Чтобы узнать, не пропала ли за день хоть одна овца, пастух откладывал в сторону по кружку каждый раз, когда очередное животное заходило в загон. И только убедившись, что овец вернулось столько же, сколько было кружков, он спокойно шел спать. Но в его стаде были не только овцы - он пас и коров, и коз, и ослов. Поэтому пришлось делать из глины и другие фигурки. А земледельцы с помощью глиняных фигурок вели учет собранного урожая, отмечая, сколько мешков зерна положено в амбар, сколько кувшинов масла выжато из оливок, сколько соткано кусков льняного полотна. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать.

  1. Числа начинают получать имена

Перекладывать каждый раз глиняные фигурки с места на место было довольно утомительным занятием. Да и при обмене рыб на каменные ножи или антилоп на каменные топоры удобнее было сначала пересчитывать товары, а уж потом приступать к обмену. Но прошло много тысячелетий, прежде чем люди научились пересчитывать предметы. Для этого им пришлось придумать названия для чисел.

Недаром ведь говорят: "Без названия нет знания".

О том, как появились имена у чисел, ученые узнают, изучая языки разных племен и народов. Например, у нивхов , живущих на Сахалине и в низовьях Амура, числительные зависят от того, какие предметы считают. Важную роль играет форма предмета, по-нивхски в сочетаниях "два яйца", "два камня", "два одеяла", "два глаза" и т. д. числительные различны. Одному русскому "два" у них соответствует несколько десятков различных слов. Много различных слов для одного и того же числительного применяют некоторые негритянские племена и племена, живущие на островах Тихого океана.

И должно было пройти много столетий, а может быть и тысячелетий, прежде чем одни и те же числительные стали применять к предметам любого вида. Вот тогда и появились общие названия у чисел.

Ученые считают, что сначала названия получили только числа 1 и 2. По радио и по телевидению часто можно услышать: "...исполняет солист Большого театра..." Слово "солист" означает "певец, музыкант или танцор, который выступает один". А происходит оно от латинского слова "солюс" - один. Да и русское слово "солнце" похоже на слово "солист".

Разгадка очень проста: когда римляне придумывали имя числу 1, они исходили из того, что Солнце на небе всегда одно .

Название числа 2 во многих языках связано с предметами, встречающимися попарно , крыльями, ушами и т. д.

Но бывало, что числам 1 и 2 давали иные имена. Иногда их связывали с местоимениями "я" и "ты", а были языки, где "один" звучало, как "мужчина", "два" - как "женщина".

У некоторых племен еще совсем недавно не было других числительных, кроме "один" и "два". А все, что шло после двух, называлось "много ". Но потом понадобилось называть и другие числа. Ведь и собак у охотника, и стрел у него, и овец у пастуха может быть больше, чем две.

И тут придумали замечательный выход: числа стали называть, повторяя названия для единиц и двоек.

Позднее другие племена дали особое имя числительному, которое мы называем " три ". А так как они до того считали "один", "два", "много", то это новое числительное стали применять вместо слова "много".

И сейчас мать, рассердившись на непослушного сына, говорит ему:

"Что я, три раза должна повторять одно и то же!"

Русская пословица говорит: "Обещанного три года ждут".

В сказках герой идет искать Кощея Бессмертного "за тридевять земель".

Число " четыре " встречается в сказках куда реже. Но о том, что и оно когда-то играло особую роль, видно из русской грамматики. Вслушайтесь, как мы говорим: "Одна лошадь, две лошади, три лошади, четыре лошади". Казалось бы, все хорошо: после единственного числа идет множественное. Но, начиная с пяти, мы говорим: "пять лошадей, шесть лошадей и т. д.", и будь их хоть миллион, а все равно "лошадей". Значит, когда-то за числом "четыре" в русском языке начиналась необозримая область "много".

  1. Римские цифры

Римские цифры - цифры, использовавшиеся древними римлянами в своей непозиционной системе счисления.

Натуральные числа записываются при помощи повторения этих цифр. Если большая цифра стоит перед меньшей, то они складываются (принцип сложения), если же меньшая - перед большей, то меньшая вычитается из большей (принцип вычитания). Последнее правило применяется только во избежание четырёхкратного повторения одной и той же цифры.

Римская (буквенная) система нумерации появилась примерно в 500 году до нашей эры у этрусков . Просуществовала она много столетий, прежде чем в средние века была заменена на привычную нам систему, взятую у арабов.
Римские нумерация оперирует только целыми числами.

В настоящее время она иногда применяется в часах, на памятниках, в книжном издательстве, в титрах некоторых американских фильмов.
Система эта довольно проста и основывается на применении 7 букв латинского алфавита:
I - 1
V - 5
X - 10
L - 50
C - 100
D - 500
M = 1000

Сначала пишутся тысячи и сотни, а затем - десятки и единицы.

Есть и некоторые правила.

Если большая цифра стоит перед меньшей, то они складываются (принцип сложения).

Если же меньшая цифра - перед большей, то меньшая вычитается из большей (принцип вычитания).

Одна черта сверху означает умножение всего числа на 1000. Но в типографии черта сверху применяется редко из-за сложности набора.

Примеры:

Число 26 = XXVI
Число 1987 = MCMLXXXVII

Чтобы лучше запомнить буквы в римских цифрах в русском языке существует правило мнемоники , которое звучит так:
М ы Д арим С очные Л имоны, Х ватит В сем И х.

Первые буквы в этой фразе (выделенные жирным) обозначают:

M, D, C, L, X, V, I

  1. Цифры русского народа

Цифры (позднелат. cifra, от араб. сифр - нуль, буквально - пустой; арабы этим словом называли знак отсутствия разряда в числе) условные знаки для обозначения чисел. Наиболее ранней и вместе с тем примитивной является словесная запись чисел, в отдельных случаях сохранявшаяся довольно долго (например, некоторые математики Средней Азии и Ближнего Востока систематически употребляли словесную запись чисел в 10 в. и даже позже). С развитием общественно-хозяйственной жизни народов возникла потребность в создании более совершенных, чем словесная запись, обозначений чисел (у разных народов числовые знаки были различными) и в разработке принципов записи чисел - систем счисления.

Древнейшие известные нам цифры - цифры вавилонян и египтян. Вавилонские цифры (2-е тыс. до н. э. - начало н. э.) представляют собой клинописные знаки для чисел 1, 10, 100 (или только для 1 и 10), все остальные натуральные числа записываются посредством их соединения.

Прямой клин  (1) и лежащий клин (10). Эти народы использовали шестидесятеричную систему счисления, например число 23 изображали так:    Число 60 снова обозначалось знаком , например число 92 записывали так:  .

В египетской иероглифической нумерации (возникновение её относится к 2500-3000 до н. э.) существовали отдельные знаки для обозначения единиц десятичных разрядов (вплоть до 10 7 ). Позднее наряду с картинным иероглифическим письмом египтяне пользовались скорописным гиератическим письмом, в котором было больше знаков (для десятков и т.д.), а затем демотическим письмом (примерно с 8 в. до н. э.).

Нумерациями типа египетской иероглифической являются финикийская, сирийская, пальмирская, греческая, аттическая или геродианова. Возникновение аттической нумерации относится к 6 в. до н. э.: нумерация употреблялась в Аттике до 1 в. н. э., хотя в других греческих землях она была задолго до этого вытеснена более удобной алфавитной ионийской нумерацией, в которой единицы, десятки и сотни обозначались буквами алфавита. Все остальные числа до 999 - их соединением (первые записи чисел в этой нумерации относятся к 5 в. до н. э.). Алфавитное обозначение чисел существовало также и у др. народов; например у арабов, сирийцев, евреев, грузин, армян.

Старинная русская нумерация (возникшая около 10 в. и встречавшаяся до 16 в.) также была алфавитной с применением славянской азбуки кириллицы (реже - глаголицы). Наиболее долговечной из древних цифровых систем оказалась римская нумерация, возникшая у этрусков около 500 до н. э.: она употребляется иногда и в настоящее время.

Прообразы современных цифры (включая нуль) появились в Индии, вероятно, не позднее 5 в. н. э. Удобство записи чисел при помощи этих цифры в десятичной позиционной системе счисления обусловило их распространение из Индии в др. страны.

В Европу индийские цифры были занесены в 10-13 вв. арабами (отсюда и сохранившееся поныне их др. название - «арабские» цифры) и получили всеобщее распространение со 2-й половины 15 в.

Начертание индийских цифры претерпело со временем ряд крупных изменений; ранняя их история плохо изучена.

  1. Самые натуральные числа

Для счета предметов применяют натуральные числа.

Любое натуральное число можно записать с помощью десяти цифр: О, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Например: триста двадцать восемь - 328

Пятьдесят тысяч четыреста двадцать один - 50421

Такую запись чисел называют десятичной. Последовательность всех натуральных чисел называют натуральным рядом:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, ...

Самое маленькое натуральное число - единица (1). В натуральном ряду каждое следующее число на 1 больше предыдущего.

Натуральный ряд бесконечен, наибольшего числа в нем нет.

Значение цифры зависит от ее места в записи числа.

Например 375:

цифра 5 означает: 5 единиц, она на последнем месте в записи числа (в разряде единиц),

цифра 7 - десятки, она находится на предпоследнем месте (в разряде десятков),

цифра 3- сотни, она стоит на третьем месте от конца (в разряде сотен) и т. д.

Цифра 0 - означает отсутствие единиц данного разряда в десятичной записи числа. Она служит и для обозначения числа "нуль".

Это число означает "ни одного". Помните! Нуль не относят к натуральным числам.

Если запись натурального числа состоит из одного знака - одной цифры, то его называют однозначным.

Например, числа 1, 5, 8 - однозначные.

Если запись числа состоит из двух знаков - двух цифр, то его называют двузначным.

числа 14, 33, 28, 95 - двузначные,

числа 386, 555, 951 - трехзначные,

числа 1346, 5787, 9999 - четырехзначные и т. д.

  1. Системы счисления

Система счисления - символический метод записи чисел, представление чисел с помощью письменных знаков.
Для начала проведём границу между числом и цифрой:

Число - это некоторая абстрактная сущность для описания количества.

Цифры - это знаки, используемые для записи чисел.

Цифры бывают разные: самыми распространёнными являются арабские цифры, представляемые известными нам знаками от нуля (0) до девяти (9); менее распространены римские цифры, мы их можем иногда встретить на циферблате часов или в обозначении века (XIX век).

Итак:

  • число - это абстрактная мера количества;
  • цифра - это знак для записи числа.

Так как чисел гораздо больше чем цифр, то для записи числа обычно используется набор (комбинация) цифр.

Только для небольшого количества чисел - для самых малых по величине - бывает достаточно одной цифры.

Существует много способов записи чисел с помощью цифр. Каждый такой способ называется системой счисления .

Величина числа может зависеть от порядка цифр в записи, а может и не зависеть.

Это свойство определяется системой счисления и служит основанием для простейшей классификации таких систем.

Это позволяет все системы счисления разделить на три класса (группы):

  • позиционные;
  • непозиционные;
  • смешанные.

Позиционные системы счисления мы рассмотрим более подробно ниже.

Смешанные и непозиционные системы счисления.

Денежные знаки - это пример смешанной системы счисления.

Сейчас в России используются монеты и купюры следующих номиналов: 1 коп., 5 коп., 10 коп., 50 коп., 1 руб., 2 руб., 5 руб., 10 руб., 50 руб., 100 руб., 500 руб., 1000 руб. и 5000 руб.

Чтобы получить некоторую сумму в рублях, нам нужно использовать некоторое количество денежных знаков различного достоинства.

Предположим, что мы покупаем пылесос, который стоит 6379 руб.

Для покупки можно использовать шесть купюр по тысяче рублей, три купюры по сто рублей, одна пятидесятирублёвая купюра, две десятки, одна пятирублёвая монета и две монеты по два рубля.

Если мы запишем количество купюр или монет начиная с 1000 руб. и заканчивая одной копейкой, заменяя нулями пропущенные номиналы, то мы получим число 603121200000.

В непозиционных системах счисления величина числа не зависит от положения цифр в записи.

Если бы мы перемешали цифры в числе 603121200000, то мы бы не смогли понять, сколько стоит пылесос. Следовательно, такая запись относится к позиционным системам.

Если же к каждой цифре приписать знак номинала, то такие составные знаки (цифра+номинал) уже можно было бы перемешивать. То есть такая запись уже является непозиционной .

Примером «чисто» непозиционной системы счисления является римская система.

  1. Заключение

Из литературных источников, во-первых, я установила – как, когда, где и кем были придуманы цифры.

Во-вторых, выяснила, что мы пользуемся десятичной системой счета, потому что у нас десять пальцев. Система счета, которую мы используем сегодня, была изобретена в Индии 1000 лет назад. Арабские купцы распространили ее по всей Европе.

В-третьих, научилась изображать числа теми способами, которыми пользовались наши предки.

Теперь я могу записать свой день рождения так:

IX.X.MMI г. –римскими цифрами;

09.10.2001г. – современными цифрами.

Полученные знания я буду использовать на уроках математики и информатики. Планирую продолжить более детальное изучение истории развития чисел.

  1. Литература

1. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. – М.: Просвещение, 1989.

2. Н.Виленкин,В.Жохов. Математика, 5 класс: учебник/М: Мнемозина, 2004.

3. Математика: Учебник-собеседник для 5-6 классов средней школы / Шаврин Л.Н., Гейн А.Г., Коряков И.О., М.В. Волков М.В. – М.: Просвещение, 1989.

5. home-edu.ru›user/f/00000660/chisla/chisla-1.html

6. Энциклопедический словарь юного математика / Сост. Савин А.П. – М.: Педагогика, 1989.

У древних людей, кроме каменного топора и шкуры вместо одежды, ничего не было, поэтому считать им было нечего. Постепенно они стали приручать скот, возделывать поля и собирать урожай; появилась торговля, и тут уж без счета никак не обойтись.

В древние времена, когда человек хотел показать, сколькими животными он владел, он клал в большой мешок столько камешков, сколько у него было животных. Чем больше животных, тем больше камешков. Отсюда и произошло слово «калькулятор», «калькулюс» по латински означает «камень»!

Сначала считали на пальцах. Когда пальцы на одной руке кончались, переходили на другую, а если на двух руках не хватало, переходили на ноги. Поэтому, если в те времена кто-то хвалился, что у него «две руки и одна нога кур», это означало, что у него пятнадцать кур, а если это называлось «весь человек», то есть две руки и две ноги.

Но как запомнить, кто, кому, сколько должен, сколько народилось жеребят и сколько теперь в стаде лошадей, сколько мешков кукурузы собрано?

Первые написанные цифры, о которых мы имеем достоверные свидетельства, появились в Египте и Месопотамии около 5000 лет назад. Хотя эти две культуры находились очень далеко одна от другой, их числовые системы очень похожи, как будто представляют один метод: использование засечек на дереве ил камне для записи прошедших дней.

Египетские жрецы писали на папирусе, изготовленном из стеблей определенных сортов тростника, а в Месопотамии - на мягкой глине. Конечно, конкретные формы их цифр были различны, но и в той, и в другой культуре использовали простые черточки для единиц и другие метки для десятков. Кроме того, в обеих системах писали желаемую цифру, повторяя черточки и метки необходимое число раз.

Вот так выглядели дощечки с числами в Месопотамии (Рис. 1).

Древние египтяне на очень длинных и дорогих папирусах писали вместо цифр очень сложные, громоздкие знаки. Вот, например, как выглядело число 5656 (Рис. 2):

Древний народ майя вместо самих цифр рисовал страшные головы, как у пришельцев, и отличить одну голову – цифру от другой было очень сложно (Рис.3).

Спустя несколько столетий, в первом тысячелетии, древний народ майя придумал запись любых чисел, используя только три знака: точку, линию и овал. Точка имела значение единицы, линия – пять. Комбинация точек и линий служила для написания любого числа до девятнадцати. Овал под любым из этих чисел увеличивал его в двадцать раз (Рис. 4). .

https://pandia.ru/text/79/058/images/image005_125.jpg" width="624" height="256 src=">

Цивилизация ацтеков пользовалась системой исчисления, состоящей только из четырёх знаков:

Точка или кружок для обозначения единицы (1);

Буква «h» для двадцати (20);

Перо для цифры х20);

Мешок, наполненный зерном, для 8х20х20).

Из использования малого числа знаков для написания цифры приходилось повторять много раз

один и тот же знак, образуя длинный ряд символов. В документах ацтекских чиновников

встречаются счета, в которых указываются результаты описи и подсчетов податей, получаемых

ацтеками от покоренных городов. В этих документах можно увидеть длинные ряды знаков,

похожие на настоящие иероглифы (рис. 6).

https://pandia.ru/text/79/058/images/image007_107.jpg" width="295" height="223 src=">

Много лет спустя в другом регионе Китая появилась новая система исчисления. Потребности

торговли, управления и науки потребовали развития нового способа написания цифр. Палочками

они обозначали цифры от единицы до девяти. Цифры от единицы до пяти они обозначали

количеством палочек в зависимости от номера. Так, две палочки соответствовали номеру 2. Чтобы

указать цифры от шести до девяти, одна горизонтальная палочка помещалась в верхней части

цифры (рис. 8).

https://pandia.ru/text/79/058/images/image009_97.jpg" width="661" height="183">

Однако Индия была оторвана от других стран, – на пути лежали тысячи километров расстояния и высокие горы. Арабы были первыми «чужими», которые заимствовали цифры у индийцев и привезли их в Европу. Чуть позже арабы упростили эти значки, они стали выглядеть вот так (Рис. 10):

Они похожи на многие наши цифры. Слово «цифра» тоже досталось нам от арабов по наследству. Арабы нуль, или «пусто», называли «сифра». С тех пор и появилось слово «цифра». Правда, сейчас цифрами называются все десять значков для записи чисел, которыми мы пользуемся: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Постепенное превращение первоначальных цифр в наши современные цифры.

2. Система исчисления.

От пальцевого счета пошли пятеричная система счисления (одна рука), десятеричная (две руки), двадцатеричная (пальцы рук и ног). В древние времена не существовало единой для всех стран системы счета. Некоторые системы исчисления брали за основу 12, другие – 60, третьи – 20, 2, 5, 8.

Шестидесятеричная система исчисления, которую ввели римляне, была распространена по всей Европе вплоть до XVI века. До сих пор римские цифры используют в часах и для оглавления книг (рис 11).

Древние римляне использовали систему исчисления, для отображения цифр в виде букв. Они использовали в своей системе исчисления следующие буквы: I. V. L. C. D. M. Каждая буква имела различное значение, каждая цифра соответствовала номеру положения буквы (рис. 12).

Предки русского народа – славяне - для обозначения чисел также употребляли буквы. Над буквами, употребляемыми для обозначения чисел, ставились специальные знаки – титла. Чтобы отделить такие буквы – числа от текста, спереди и сзади ставились точки.

Этот способ обозначения цифр называется цифирью. Он был заимствован славянами от средневековых греков – византийцев. Поэтому цифры обозначались только теми буквами, для которых есть соответствия в греческом алфавите (Рис. 13).

https://pandia.ru/text/79/058/images/image015_55.jpg" align="left" width="276" height="256 src=">

Десять тысяч – тьма,

десять тем – легион,

десять легионов – леодр,

десять леодров – ворон,

десять воронов – колода.

Такой способ обозначения чисел по сравнению с принятой в Европе десятичной системой был очень неудобен. Поэтому Петр I ввел в России привычные для нас десять цифр, отменив буквенную цифирь.

А какая же у нас система исчисления в настоящее время?

Наша система исчисления имеет три основных характеристики: она позиционная, аддитивная и

десятичная.

Позиционная, поскольку каждая цифра имеет определенное значение согласно месту,

занимаемому в ряду, выражающим число: 2 означает две единицы в числе 52 и двадцать единиц в

Аддитивная, или слагаемая, поскольку значение одного числа равно сумме цифр, образующих

его. Так, значение 52 равно сумме 50+2.

Десятичная, поскольку каждый раз, когда одна цифра смещается на одно место влево

в написании числа, его значение увеличивается в десять раз. Так, число 2, имеющее значение две

единицы, превращается в двадцать единиц в числе 26, поскольку перемещается на одно место

Заключение:

Работая над темой, я сделала много интересных открытий для себя: узнала как, когда, где и кем были придуманы цифры, о том, что мы пользуемся десятичной системой счёта, так как у нас десять пальцев. Система счёта, которую мы используем сегодня, была изобретена в Индии тысячу лет назад. Арабские купцы распространили её по всей Европе к 900 году. В этой системе использовались цифры 1, 2, 3, 4, 5, 6, 7, 8, 9 и 0. Это десятичная система, построенная на основе десятка. В наше время мы используем систему исчисления, имеющую три характеристики: позиционная, аддитивная и десятичная. В дальнейшем полученные знания я буду использовать на уроках математики, информатики и истории.