Сообщение по теме диффузия в твердых телах. Поверхностная диффузия тел. Три состояния вещества

Учитель физики Ноздрина Л.Д.

Диффузия в газах, жидкостях и твердых телах.

Слайд 2

Цели и задачи урока

Основные положения МКТ;

Определение диффузии;

Особенности процесса диффузии в различных средах.

Объяснять явление диффузии на основании МКТ.

Слайд 3

  • Молекула – наименьшая частица вещества.
  • Михаил Васильевич Ломоносов в 1745 году разграничил понятия атом и молекула.
  • Молекулы состоят из атомов.
  • Атом – наименьшая частица химического элемента.
  • Слайд 4

    Три состояния вещества

    Размеры молекулы порядка 10‾¹ºм

    Повторим

    Слайд 5

    "Один опыт я ставлю выше 1000 мнений, рожденных воображением"

    М. В. Ломоносов

    • Источники физических знаний
  • Слайд 6

    Броуновское движение

    Роберт Броун в 1827 году, наблюдая под микроскопом взвесь в виде растительной пыльцой, обнаружил, что частицы находятся в непрерывном движении, описывая сложные траектории.

    Слайд 8

    Диффузия наблюдается

    • В газах
    • В жидкостях
    • В твердых телах
  • Слайд 9

    Ароматические масла, смолы широко используются в парфюмерной промышленности, лечебной ароматерапии, для церковных нужд.

    Диффузия газов в газах

    Слайд 10

    Диффузия газов в газах

    • Ароматические вещества
    • Масла
    • Смолы
    • Лепестки жасмина
    • Лепестки роз
    • Мирра
    • Ладанное дерево
  • Слайд 11

    Кого из нас не поражал запах весенней ночи? Мы могли ощущать запахи черемухи, акаций, сирени. Молекулы пахнущего вещества цветов диффундируют в воздух.

    Диффузия газов в газах

    Слайд 12

    В качестве тонизирующих культур обычно употребляют чай, кофе и какао.

    Родина чая- Китай,кофе- Африка, какао - Америка. Быстрое распространение аромата этих напитков объясняется тем, что молекулы пахучего вещества проникают между молекулами воздуха.

    Диффузия газов в газах

    Слайд 13

    Самым многочисленным способом общения насекомых осуществляется с помощью обонятельных химических средств, которые животные используют для своей защиты или привлечения внимания.

    • Передача запахов осуществляется посредством диффузии.

    Диффузия газов в газах

    Слайд 14

    • Привлекательные
    • Феромоны, гормоны.
    • Диффузия газов в газах
    • Ароматы
    • Бабочки
    • Майские жуки
    • Хорьки
    • Клопы
    • Скунсы
    • Отталкивающие
    • Репелленты
  • Слайд 15

    Леса – легкие планеты, помогающие дышать всему живому.

    Городской воздух содержит много газообразных веществ (угарный газ, углекислый газ, оксиды азота, сера), полученных в результате работы промышленного комплекса, транспорта и коммунального хозяйства.

    Процесс очищения воздуха лесом можно объяснить диффузией.

    Диффузия газов в газах

    Слайд 16

    Природный горючий газ не имеет ни цвета, ни запаха.

    Диффузия газов в газах

    За счет диффузии газ распространяется по всему помещению, образуя взрывоопасную смесь.

    Слайд 18

    Пути решения экологической проблемы, связанной с очищением воздуха:

    1) фильтры на выхлопных трубах;

    2) выращивание растений вдоль дорог и вокруг предприятий, поглощающих вредные вещества.

    Диффузия газов в газах

    • Тополь
  • Слайд 19

    Наблюдение процесса диффузии молекул воздуха и молекул нашатырного спирта (индикатором служит лакмусовая бумажка, фиксирующая наличие щелочной среды)

    НАШ ЭКСПЕРИМЕНТ

    Слайд 20

    Наблюдение растворения дыма от костра в воздухе.

    НАШ ЭКСПЕРИМЕНТ

    Слайд 21

    НАШ ЭКСПЕРИМЕНТ

    Распространение запаха освежителя воздуха в помещении.

    Слайд 22

    Пчелиный яд- это бесцветная прозрачная жидкость с ароматным запахом, обладающая высокой биологической активностью.

    Быстрое проникание пчелиного яда связано с биологическими процессами в организме

    (с движением молекул яда и их взаимодействием с межклеточной жидкостью соединительной ткани).

    ДИФФУЗИЯ ЖИДКОСТИ В ЖИДКОСТИ

    Слайд 23

    Для приготовления чая используют цветы и листочки некоторых растений: жасмина, розы, липы, душицы, мяты, чабреца и других.

    ДИФФУЗИЯ ЖИДКОСТИ В ЖИДКОСТИ

    Слайд 24

    ДИФФУЗИЯ ЖИДКОСТИ В ЖИДКОСТИ

    • Зелёный
    • Чёрный

    В твёрдом состоянии цвет чая зависит от способа обработки листьев.

    Заварка чая основана на диффузии молекул воды и красящего вещества растений.

    Слайд 25

    НАШ ЭКСПЕРИМЕНТ

    Приглашаем на чай.

    Слайд 26

    НАШ ЭКСПЕРИМЕНТ

    Сравнение скорости протекания диффузии при заваривании чая холодной и горячей водой.

    Процесс диффузии ускоряется с повышением температуры; происходит медленнее, чем в газах.

    Слайд 27

    При добавлении дольки лимона чай становится светлее.

    НАШ ЭКСПЕРИМЕНТ

    Цвет чая коричневый только в нейтральной среде (в воде).

    Слайд 28

    НАШ ЭКСПЕРИМЕНТ

    Для насыщения цвета свеклы в воде добавляется уксусная кислота.

    Слайд 29

    Запах соли, запах йода.

    Непреступны и горды,

    Рифы каменные морды

    Выставляют из воды…

    Ю. Друнина

    Ежегодно в атмосферу попадает 2 млрд. тонн солей.

    Слайд 30

    Смог - желтый туман, отравляющий воздух, которым мы дышим.

    Смог - основная причина дыхательных и сердечных болезней, ослабления иммунитета человека.

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ГАЗАХ

    Слайд 31

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ГАЗАХ

    Частицы, встречающиеся в городском воздухе.

    • Пыльца растений
    • Микроорганизмы, их споры
    • Сухой песок
    • Угольная пыль
    • Цементная пыль
    • Удобрение
    • Асбест
    • Кадмий
    • Ртуть
    • Свинец
    • Оксид железа
    • Оксид меди
    • Радиус частиц, мкм
    • 20 – 60
    • 1 - 15
    • 200 - 2000
    • 10 – 400
    • 10 – 150
    • 30 – 800
    • 10 – 200
    • 0,5-1
    • 0,1-1
    • 0,1-1
  • Слайд 32

    Как объяснить процесс соления овощей?

    Слайд 33

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ЖИДКОСТИ

    Соления грибов

    Слайд 34

    Соления фруктов

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ЖИДКОСТИ

    При засолке кристаллики соли распадаются на ионы Na и Cl в водном растворе, беспорядочно движутся и занимают промежутки между порами продуктов питания.

    Слайд 35

    Приготовление варенья и компотов.

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ЖИДКОСТИ

    Слайд 36

    Получение сахара из свеклы в промышленном производстве

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ЖИДКОСТИ

    Слайд 37

    Растворение кристаллов перманганата калия в воде.

    НАШ ЭКСПЕРИМЕНТ

    Слайд 38

    НАШ ЭКСПЕРИМЕНТ

    Растворение кристаллов сахара в горячей воде.

    Слайд 39

    Растворение таблетки «Мукалтина» в воде.

    НАШ ЭКСПЕРИМЕНТ

    Слайд 40

    Приготовление солёных огурцов, квашенной капусты, солёной рыбы и сала в домашних условиях.

    НАШ ЭКСПЕРИМЕНТ

    Слайд 41

    Для придания железным и стальным деталям твердости, износостойкости и предела прочности их поверхности подвергают диффузному насыщению углеродом (цементация)

    Слайд 42

    Английский металлург Вильям Робертс- Аустин измерял диффузию золота в свинце, помещая этот цилиндр в печь при температуре около 200 °С на 10 дней.

    Атомы золота равномерно распределялись по всему свинцовому цилиндру.

    Слайд 43

    НАШ ЭКСПЕРИМЕНТ

    Наблюдение явления диффузии молекул перманганата калия и воска.

    Слайд 44

    НАШ ЭКСПЕРИМЕНТ

    • Результат через три недели.
    • Прошло два месяца.
    • Молекулы твёрдых тел диффундируют медленнее всего.
  • Слайд 45

    • Причина диффузии - беспорядочное движение молекул.
    • Скорость диффузии зависит от того, в каком агрегатном состоянии находятся соприкасающиеся тела.
    • Диффузия быстро протекает в газах, медленнее в жидкостях и очень медленно в твердых телах.
    • Процесс диффузии ускоряется с повышением температуры, с уменьшением вязкости среды и размеров частиц.
  • Слайд 46

    1. Какой рисунок наиболее правильно показывает каплю воды в микроскопе при сильном увеличении?

    2. Имея модели частиц двух веществ, покажите, что происходит в веществе при их самопроизвольном смешивании.

    3. Выберите рисунок, на котором направление стрелок правильно указывает направление движения двух частиц в веществе.

    Опишите, как движутся частицы в веществе.

    С какими танцами или мелодиями можно сравнить движение частиц пальмы, растущей в Африке, и частиц кедра, растущего в Сибири?

    Слайд 47

    Все знают, как полезен репчатый лук. Но при его разрезании мы проливаем слезы. Объясните почему?

    Это объясняется явлением диффузии.Причина в летучем веществе лакриматоре, вызывающем слёзы. Оно растворяется в жидкости слизистой оболочки глаза, выделяя серную кислоту, которая и раздражает слизистую оболочку глаза.

    Слайд 48

    Средний уровень: 1. В каком рассоле – горячем или холодном – быстрее засолятся огурцы?

    2. Почему ткань, окрашенную недоброкачественной краской, нельзя в мокром состоянии держать в соприкосновении со светлым бельем?

    Достаточный уровень: 1. Почему дым от костра, поднимаясь вверх, быстро перестает быть видимым даже в безветренную погоду?

    2. Будут ли распространяться запахи в герметично закрытом подвальном помещении, где совершенно нет сквозняков?

    Высокий уровень: 1. Открытый сосуд с эфиром уравновесили на весах и оставили в покое. Через некоторое время равновесие весов нарушилось. Почему?

    2. Какое значение имеет диффузия для процессов дыхания человека и животных?

    Слайд 49

    1. Параграф №9, вопросы к параграфу;

    2. Экспериментальное задание (описать явления диффузии, наблюдаемые дома).

    3. Ответить письменно на вопрос:

    Почему сладкий сироп приобретает со временем вкус фруктов? (средний уровень)

    Почему соленая сельдь, после того как ее оставили на некоторое время в воде, делается менее соленой? (достаточный уровень)

    Почему при склеивании и паянии применяют жидкий клей и расплавленный припой? (высокий уровень)

    Слайд 50

    Слайд 51

    1. СемкеА.И. «Нестандартные задачи по физике», Ярославль: Академия развития,2007.

    2. Шустова Л.В., Шустов С.Б. «Химические основы экологии».М.:Просвещение,1995.

    3. Лукашик В.И. Задачник по физике 7-8кл. М.: Просвещение,2002.

    4. Кац Ц.Б. Биофизика на уроках физики. М.: Просвещение,1998.

    5. Энциклопедия Физика. М.: Аванта +,1999.

    6. Богданов К.Ю. Физик в гостях у биолога. М.: Наука,1986.

    7. Енохович А.С. Справочник по физике. М.: Просвещение, 1990.

    8. Ольгин О. И. Опыты без взрывов. М.: Химия,1986.

    9. Ковтунович М.Г. «Домашний эксперимент по физике 7-11 классы». М.: Гуманитарный издательский центр, 2007.

    10. Internet- ресурсы.

    Литература

    Посмотреть все слайды

    Применяют полученные знания и умения для решения практических задач повседневной жизни

    Учащиеся выполняют задание, вспоминают, достигают поставленной цели за счет собственных ресурсов памяти, мышления. Составляют ответ, высказывают собственную точку зрения, приходят к единому мнению.

    Контролируют собственное время, правильность и очередность высказываний своих и собеседника в процессе работы

    Диффузия в природе и технике

    Работают с текстами, которые получит каждая группа. Задача каждой группы - выделить в тексте главное и составить рассказ о применении процесса диффузии в данной области. Выступающих от группы может быть несколько.

    Текст 1 группы . Диффузия в растительном мире

    К.А. Тимирязев говорил: «Будем ли мы говорить о питании корня за счёт веществ, находящихся в почве, будем ли говорить о воздушном питании листьев за счет атмосферы или питании одного органа за счёт другого, соседнего, - везде для объяснения мы будем прибегать к тем же причинам: диффузия».
    Действительно, в растительном мире очень велика роль диффузии. Например, большое развитие листовой кроны деревьев объясняется тем, что диффузионный обмен сквозь поверхность листьев выполняет не только функцию дыхания, но частично и питания. В настоящее время широко практикуется внекорневая подкормка плодовых деревьев путем опрыскивания их кроны.
    Большую роль играют диффузные процессы в снабжении природных водоёмов и аквариумов кислородом. Кислород попадает в более глубокие слои воды в стоячих водах за счёт диффузии через их свободную поверхность. Поэтому нежелательны всякие ограничения свободной поверхности воды. Так, например, листья или ряска, покрывающие поверхность воды, могут совсем прекратить доступ кислорода к воде и привести к гибели ее обитателей. По этой же причине сосуды с узким горлом непригодны для использования в качестве аквариума.

    Текст 2 группы . Роль диффузии в пищеварении и дыхании человека

    Наибольшее всасывание питательных веществ происходит в тонких кишках, стенки которых специально для этого приспособлены. Площадь внутренней поверхности кишечника человека равна 0,65м2. Она покрыта ворсинками - микроскопическими образованиями слизистой оболочки высотой 0,2-1мм, за счет чего площадь реальной поверхности кишечника достигает 4-5 м2, т.е. достигает в 2-3 раза больше площади поверхности всего тела. Процесс всасывания питательных веществ в кишечнике возможен благодаря диффузии.
    Дыхание - перенос кислорода из окружающей среды внутрь организма сквозь его покровы - происходит тем быстрее, чем больше площадь поверхности тела и окружающей среды, и тем медленнее, чем толще и плотнее покровы тела. Отсюда понятно, что малые организмы, у которых площади поверхности велики по сравнению с объемом тела, могут обходиться вовсе без специальных органов дыхания, удовлетворяясь притоком кислорода исключительно через наружную оболочку.
    А как же дышит человек? У человека в дыхании принимает участие вся поверхность тела - от самого толстого эпидермиса пяток до покрытой волосами кожи головы. Особенно интенсивно дышит кожа на груди, спине и животе. Интересно, что по интенсивности дыхания эти участки кожи значительно превосходят легкие. С одинаковой по размеру дыхательной поверхности здесь может поглощаться кислорода на 28% а выделяться углекислого газа даже на 54% больше, чем в легких. Однако во всем дыхательном процессе участие кожи ничтожно по сравнению с легкими, так как общая площадь поверхности легких, если развернуть все 700 млн. альвеол, микроскопических пузырьков, через стенки которых происходит газообмен между воздухом и кровью, составляет около 90-100 м2, а общая площадь поверхности кожи человека около 2 м2, т.е, в 45-50 раз меньше. Таким образом, диффузия имеет большое значение в процессах жизнедеятельности человека, животных и растений. Благодаря диффузии кислород из легких пpoникaeт в кровь человека, а из крови - в ткани.

    Текст 3 группы. Применение диффузии в технике.

    Диффузия находит широкое применение в промышленности. На явлении диффузии основана диффузионная сварка металлов. Методом диффузионной сварки соединяют между собой металлы, неметаллы, металлы и неметаллы, пластмассы. Детали помещают в закрытую сварочную камеру с сильным разряжением, сдавливают и нагревают до 800 градусов. При этом происходит интенсивная взаимная диффузия атомов в поверхностных слоях контактирующих материалов. Диффузионная сварка применяется в основном в электронной и полупроводниковой промышленности, точном машиностроении.
    Для извлечения растворимых веществ из твердого измельченного материала применяют диффузионный аппарат. Такие аппараты распространены главным образом в свеклосахарном производстве, где их используют для получения сахарного сока из свекловичной стружки, нагреваемой вместе с водой.
    На явлении диффузии основан процесс металлизации - покрытия поверхности изделия слоем металла или сплава для сообщения ей физических, химических и механических свойств, отличных от свойств металлизируемого материала. Он применяется для защиты изделий от коррозии, износа, повышения контактной электрической проводимости, в декоративных целях. Для повышения твердости и жаростойкости стальных деталей применяют цементацию. Она заключается в том, что стальные детали помещают в ящик с графитовым порошком, который устанавливают в термической печи. Атомы углерода вследствие диффузии проникают в поверхностный слой деталей. Глубина проникновения зависит от температуры и времени выдержки деталей в термической печи.

    Текст для 4 группы. Но, не всегда диффузия благо для человека. К сожалению, необходимо отметить и вредные проявления этого явления. Дымовые трубы предприятий выбрасывают в атмосферу углекислый газ, оксиды азота и серы. В настоящее время общее количество эмиссии газов в атмосферу превышает 40 миллиардов тонн в год. Избыток углекислого газа в атмосфере опасен для живого мира Земли, нарушает круговорот углерода в природе, приводит к образованию кислотных дождей. Процесс диффузии играет большую роль в загрязнении рек, морей и океанов. Годовой сброс производственных и бытовых стоков в мире равен примерно 10 триллионов тонн.
    Загрязнение водоёмов приводит к тому, что в них исчезает жизнь, а воду, используемую для питья, приходится очищать, что очень дорого. Кроме того, в загрязненной воде происходят химические реакции с выделением тепла. Температура воды повышается, при этом снижается содержание кислорода в воде, что плохо для водных организмов. Из-за повышения температуры воды многие реки теперь зимой не замерзают.
    Для снижения выброса вредных газов из промышленных труб, труб тепловых электростанций устанавливают специальные фильтры. Для предупреждения загрязнения водоемов необходимо следить за тем, чтобы вблизи берегов не выбрасывался мусор, пищевые отходы, навоз, различного рода химикаты.

    Среди многочисленных явлений в физике процесс диффузии относится к одним из самых простых и понятных. Ведь каждое утро, готовя себе ароматный чай или кофе, человек имеет возможность наблюдать эту реакцию на практике. Давайте узнаем больше об этом процессе и условиях его протекания в разных агрегатных состояниях.

    Что такое диффузия

    Данным словом именуется проникновение молекул или атомов одного вещества между аналогичными структурными единицами другого. При этом концентрация проникающего соединений выравнивается.

    Впервые этот процесс был подробно описан немецким ученым Адольфом Фиком в 1855 г.

    Название данного термина было образовано от латинского diffusio (взаимодействие, рассеивание, распространение).

    Диффузия в жидкости

    Рассматриваемый процесс может происходить с веществами во всех трех агрегатных состояниях: газообразном, жидком и твердом. Чтобы отыскать практические примеры этого, стоит просто заглянуть на кухню.

    Варящийся на плите борщ - это один из них. Под действием температуры молекулы глюкозинбетанина (вещества, благодаря которому свекла обладает таким насыщенным алым цветом) равномерно реагируют с молекулами воды, придавая ей неповторимый бордовый оттенок. Данный случай - это в жидкостях.

    Помимо борща, данный процесс можно увидеть и в стакане чая или кофе. Оба эти напитка имеют столь равномерный насыщенный оттенок благодаря тому, что заварка или частички кофе, растворяясь в воде, равномерно распространяются между ее молекулами, окрашивая ее. На этом же принципе построено действие всех популярных растворимых напитков девяностых: Yupi, Invite, Zuko.

    Взаимопроникновение газов

    Атомы и молекулы, переносящие запах, находятся в активном движении и вследствие него перемешиваются с частицами, уже содержащимися в воздухе, и довольно равномерно рассеиваются в объеме помещения.

    Это проявление диффузии в газах. Стоит отметить, что само вдыхание воздуха тоже относится к рассматриваемому процессу, как и аппетитный запах свежеприготовленного борща на кухне.

    Диффузия в твердых телах

    Кухонный стол, на котором стоят цветы, застелен скатертью яркого желтого цвета. Подобный оттенок она получила благодаря способности диффузии проходить в твердых телах.

    Сам процесс придания полотну какого-то равномерного оттенка проходит в несколько этапов следующим образом.

    1. Частички желтого пигмента диффундировали в красильной емкости по направлению к волокнистому материалу.
    2. Далее они были впитаны внешней поверхностью окрашиваемой ткани.
    3. Следующим шагом была снова диффузия красителя, но на этот раз уже внутрь волокон полотна.
    4. В финале ткань зафиксировала частички пигмента, таким образом окрасившись.

    Диффундирование газов в металлах

    Обычно, говоря об этом процессе, рассматривают взаимодействия веществ в одинаковых агрегатных состояниях. Например, диффузия в твердых телах, твердых веществах. Для доказательства этого явления проводится опыт с двумя прижатыми друг к другу металлическими пластинами (золото и свинец). Взаимопроникновение их молекул происходит довольно долго (один миллиметр за пять лет). Этот процесс используется для изготовления необычных украшений.

    Однако диффундировать способны и соединения в разных агрегатных состояниях. К примеру, существует диффузия газов в твердых телах.

    В процессе экспериментов было доказано, что подобный процесс протекает в атомарном состоянии. Для его активации, как правило, нужно значительно повышение температуры и давления.

    Примером такой газовой диффузии в твердых телах является водородная коррозия. Она проявляется в ситуациях, когда возникшие в процессе какой-нибудь химической реакции атомы водорода (Н 2) под действием высоких температур (от 200 до 650 градусов Цельсия) проникают между структурными частицами металла.

    Помимо водорода, в твердых телах диффузия кислорода и других газов также способна происходить. Этот незаметный глазу процесс приносит немало вреда, ведь из-за него могут рушиться металлические сооружения.

    Диффундирование жидкостей в металлах

    Однако не только молекулы газов могут проникать в твердые тела, но и жидкостей. Как и в случае с водородом, чаще всего такой процесс приводит к коррозии (если речь идет о металлах).

    Классическим примером диффузии жидкости в твердых телах является коррозия металлов под воздействием воды (Н 2 О) или растворов электролитов. Для большинства этот процесс более знаком под названием ржавления. В отличие от водородной коррозии, на практике с ним приходится сталкиваться значительно чаще.

    Условия ускорения диффузии. Коэффициент диффузии

    Разобравшись с тем, в каких веществах может происходить рассматриваемый процесс, стоит узнать об условиях его протекания.

    В первую очередь быстрота диффузии зависит от того, в каком агрегатном состоянии пребывают взаимодействующие вещества. Чем больше в котором происходит реакция, тем медленнее ее скорость.

    В связи с этим диффузия в жидкостях и газах всегда будет проходить более активно, нежели в твердых телах.

    К примеру, если кристаллы перманганата калия KMnO 4 (марганцовка) бросить в воду, они в течение нескольких минут придадут ей красивый малиновый цвет. Однако если посыпать кристаллами KMnO 4 кусочек льда и положить все это в морозилку, по прошествии нескольких часов перманганат калия так и не сможет полноценно окрасить замороженную Н 2 О.

    Из предыдущего примера можно сделать еще один вывод об условиях диффузии. Помимо агрегатного состояния, на скорость взаимопроникновения частиц влияет также и температура.

    Чтобы рассмотреть зависимость от нее рассматриваемого процесса, стоит узнать о таком понятии, как коэффициент диффузии. Так называется количественная характеристика ее скорости.

    В большинстве формул она обозначается при помощи большой латинской литеры D и в системе СИ измеряется в квадратных метрах на секунду (м²/с), иногда - в сантиметрах за секунду (см 2 /м).

    Коэффициент диффузии равен количеству вещества, рассеивающегося через единицу поверхности на протяжении единицы времени, при условии, что разность плотностей на обеих поверхностях (расположенных на расстоянии равном единице длины) равна единице. Критерии, определяющие D, - это свойства вещества, в котором происходит сам процесс рассеивания частиц, и их тип.

    Зависимость коэффициента от температуры можно описать при помощи уравнения Аррениуса: D = D 0exp (-E/TR).

    В рассмотренной формуле Е - минимальная энергия, необходимая для активации процесса; Т - температура (измеряется по Кельвину, а не Цельсию); R - постоянная газовая, характерная для идеального газа.

    Помимо всего вышеперечисленного, на скорость диффузии в твердых телах, жидкости в газах влияет давление и излучение (индукционное или высокочастотное). Кроме того, многое зависит от наличия катализирующего вещества, часто именно оно выступает в роли пускового механизма для начала активного рассеивания частиц.

    Уравнение диффузии

    Данное явление - частный вид уравнения дифференциального при частных производных.

    Его цель - отыскать зависимость концентрации вещества от размеров и координат пространства (в котором оно диффундирует), а также времени. При этом заданный коэффициент характеризует проницаемость среды для реакции.

    Чаще всего уравнение диффузии записывают следующим образом: ∂φ (r,t)/∂t = ∇ x .

    В нем φ (t и r) — плотность рассеивающегося вещества в точке r во время t. D (φ, r) — диффузии обобщенный коэффициент при плотности φ в точке r.

    ∇ — векторный дифференциальный оператор, компоненты которого по координатам относятся к частным производным.

    Когда коэффициент диффузии зависим от плотности, уравнение является нелинейным. Когда нет — линейным.

    Рассмотрев определение диффузии и особенности данного процесса в разных средах, можно отметить, что он имеет как положительные, так и отрицательные стороны.

    Видели ли вы когда-нибудь полчища мелких назойливых мошек, беспорядочно роящихся над головой? Иной раз кажется, что они как будто неподвижно висят в воздухе. С одной стороны этот рой неподвижен, с другой — насекомые внутри него безостановочно движутся то вправо, то влево, то вверх, то вниз, постоянно сталкиваясь друг с другом и разлетаясь вновь в пределах этого облака, как будто невидимая сила удерживает их вместе.

    Движения молекул носят похожий хаотичный характер, при этом тело сохраняет стабильную форму. Такое движение называется тепловым движением молекул.

    Броуновское движение

    В далеком 1827 году известный британский ботаник Роберт Броун при помощи микроскопа изучал поведение микроскопических частиц цветочной пыльцы в воде. Он обратил внимание на то, что частички постоянно двигались в хаотичном, не поддающемся логическому объяснению порядке, и это беспорядочное движение не зависело ни от движения жидкости, в которой они находились, ни от ее испарения. Мельчайшие частички пыльцы описывали сложные, загадочные траектории. Интересно то, что интенсивность такого движения не снижается со временем и не связано с химическими свойствами среды, а только увеличивается, если уменьшается вязкость этой среды или размеры движущихся частиц. Кроме этого, большое влияние на скорость движения молекул оказывает температура: чем она выше, тем частицы движутся быстрее.

    Диффузия

    Давным-давно люди поняли, что все вещества на свете состоят из мельчайших частиц: ионов, атомов, молекул, и между ними имеются промежутки, и эти частицы постоянно и хаотично движутся.

    Следствием теплового движения молекул является диффузия. Примеры мы можем наблюдать практически везде в повседневной жизни: и в быту, и в живой природе. Это распространение запахов, склеивание различных твердых предметов, перемешивание жидкостей.

    Говоря научным языком, диффузия — это явление проникновения молекул одного вещества в промежутки между молекулами другого вещества.

    Газы и диффузия

    Самый простой пример диффузии в газах — это довольно быстрое распространение в воздухе запахов (как приятных, так и не очень).

    Диффузия в газах может быть крайне опасной, из-за этого явления молниеносно протекает отравление угарным и другими ядовитыми газами.

    Если диффузия в газах происходит быстро, чаще всего за считанные секунды, то диффузия в жидкостях занимает целые минуты и иногда даже часы. Это зависит от плотности и температуры.

    Одним из примеров является очень быстрое растворение солей, спиртов и кислот, за короткое время образующих однородные растворы.

    Диффузия в твердых телах

    В твердых телах диффузия протекает труднее всего, при обычной комнатной или уличной температуре она незаметна. Во всех современных и старых школьных учебниках в качестве примера описан опыт со свинцовой и золотой пластинками. Этот эксперимент показал, что только по прошествии более четырех лет в свинец проникло ничтожно малое количество золота, а свинец проник в золото на глубину не более пяти миллиметров. Такое различие обусловлено тем, что плотность свинца намного выше плотности золота.

    Следовательно, скорость и интенсивность диффузии не в последнюю очередь зависит от плотности вещества и скорости хаотичного движения молекул, а скорость, в свою очередь — от температуры. Диффузия интенсивнее и быстрее протекает при более высоких температурах.

    Примеры диффузии в быту

    Мы даже не задумываемся о том, что ежедневно практически на каждом шагу встречаем явление диффузии. Именно поэтому это явление считается одним из самых значительных и интересных в физике.

    Один из простейших примеров диффузии в быту — растворение сахара в чае или кофе. Если в стакан с кипятком поместить кусочек сахара, он через некоторое время исчезнет бесследно, при этом даже объем жидкости практически не изменится.

    Если внимательно осмотреться вокруг, можно найти немало примеров диффузии, облегчающих наш быт:

    • растворение стирального порошка, марганцовки, соли;
    • распыление освежителей воздуха;
    • аэрозоли для горла;
    • вымывание грязи с поверхности белья;
    • смешивание красок художником;
    • замешивание теста;
    • приготовление наваристых бульонов, супов, и подлив, сладких компотов и морсов.

    В 1638 г., вернувшись из Монголии, посол Василий Старков преподнес русскому царю Михаилу Федоровичу в подарок почти 66 кг сушеных листьев, обладающих странным терпковатым ароматом. Это засушенное растение очень понравилось ни разу не пробовавшим его москвичам, и они его с удовольствием до сих пор употребляют. Узнали его? Конечно же, это чай, который заваривается благодаря явлению диффузии.

    Примеры диффузии в окружающем мире

    Роль диффузии в окружающем нас мире очень велика. Одним из важнейших примеров диффузии является кровообращение в живых организмах. Кислород из воздуха проникает в капилляры крови, расположенные в легких, после этого растворяется в них и разносится по всему организму. В свою очередь углекислый газ диффундирует из капилляров в альвеолы легких. Питательные вещества, выделяемые из пищи путем диффузии проникают в клетки.

    У травянистых видов растений диффузия идет через всю их зеленую поверхность, у более крупных цветущих растений - через листья и стебли, у кустарников и деревьев — через трещины в коре стволов и веток и чечевички.

    Кроме того, примером диффузии в окружающем мире является всасывание воды и растворенных в ней минералов корневой системой растений из почвы.

    Именно диффузия является причиной того, что состав нижнего слоя атмосферы является неоднородным и состоит из нескольких газов.

    К сожалению, в нашем несовершенном мире найдется совсем немного людей, которые не знают, что такое инъекция, также известная как "укол". Этот вид болезненного, но эффективного лечения также основан на явлении диффузии.

    Загрязнение окружающей среды: почвы, воздуха, водоемов — это тоже примеры диффузии в природе.

    Тающие в синем небе белые облака, так любимые поэтами всех времен — тоже она— известная каждому ученику средних и старших классов диффузия!

    Итак, диффузия — это то, без чего жизнь наша была бы не просто труднее, а практически невозможной.

    Цели урока:

    Обучающие: закрепить знания учеников по заданной теме, научить их понимать и описывать поведение молекул вещества в различных агрегатных состояниях, объяснить значение процесса диффузии в природе и жизни человека.

    Воспитательные: продолжить формирование у учащихся способности к научному мышлению.

    Образовательные: привить ученикам умение сопоставлять увиденные в природе явления с полученными знаниями о различных физических законах.

    Основные термины:

    Агрегатное состояние вещества – это состояние вещества, которое можно охарактеризовать набором определенных свойств (например, сохранение или неспособность к сохранению объема, формы и т.д.).

    Диффузия

    Понятие агрегатного состояния вещества.

    Мир, окружающий нас, сложен и изменчив. В то же время, мы способны заметить, что безграничное разнообразие мира – не такое уж и безграничное. Мы часто видим одни и те же вещества в различных состояниях.

    Самый простой пример, на котором я смогу доказать правдивость своих слов – это вода. Ее проще всего увидеть в разных состояниях – это пар, или туман, это лед или снег, это жидкость, бегущая из-под крана в кухне. Какими бы ни были особенности воды в той или иной форме, она всегда остается водой – ее состав не меняется. Это все те же 2 молекулы водорода и 1 молекула кислорода .

    Если и дальше использовать взятый нами пример, то мы можем проследить, что эти 3 состояния воды зависят от определенных внешних условий. Так, вода замерзает при 0 градусов, превращаясь в лед, и вода закипает при 100 градусах, превращаясь в пар. Вот эта фотография наглядно демонстрирует все 3 состояния воды:

    Рис. 1: 3 агрегатные состояния воды

    Итак, какие же выводы мы можем сделать, хорошенько подумав о приведенном нами примере? Они будут такими:

    Агрегатное состояние вещества – это состояние вещества, которое можно охарактеризовать набором определенных свойств (например, сохранение или неспособность к сохранению объема, формы и т.д.) при определенных условиях.

    Не только вода может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Это присуще всем веществам.

    Иногда к трем вышеперечисленным агрегатным состояниям, добавляют еще и четвертое – плазму. О том, как выглядит плазма, вы пожжете получить представление из следующего рисунка:


    Рис. 2: плазменная лампа

    но о плазме более подробно вы узнаете на уроках физики и химии в старших классах.

    Процесс диффузии

    Как все мы уже успели узнать, все вещества состоят из мельчайших частичек – ионов, атомов, молекул, которые пребывают в постоянном движении. Именно это движение и становится причиной, по которой возникает процесс диффузии.

    Диффузия - это процесс, заключающийся во взаимном проникновении молекул веществ в промежутки между молекулами в других веществах.

    Давайте более подробно рассмотрим диффузию в различных агрегатных состояниях.

    Диффузия в газах

    Давайте вместе приведем примеры процесса диффузии в газах. Варианты проявления этого явления могут быть таковыми:

    Распространение запаха цветов;

    Слезы из-за нарезания лука;

    Шлейф духов, который можно почувствовать в воздухе.

    Промежутки между частицами в воздухе довольно большие, частицы двигаются хаотично, поэтому диффузия газообразных веществ происходит достаточно быстро.

    Давайте посмотрим видео, демонстрирующее этот процесс:

    Диффузия в жидкостях.

    Частички веществ в жидкостях, а это чаще всего ионы веществ, взаимодействуют между собой достаточно сильно. В то же время, расстояние между ионами достаточно большое, что позволяет частичкам легко смешиваться.

    На следующей видео картинке видно, как проходит процесс диффузии в жидкостях. Частички краски, попадая на поверхность воды, легко диффундируют, то есть – проникают в воду.


    Рис. 3: частички краски распространяются в воде.

    Этот же процесс, но уже в динамике, вы можете наблюдать на видео на примере растворения кристаллов перманганата калия:

    Диффузия в твердых телах.

    Твердые тела могут иметь различное строение и состоять из молекул, атомов или ионов . В любом случае, вне зависимости от того, из каких микрочастиц состоит тело, взаимодействие этих частиц друг с другом очень сильно. Не смотря на то, что они, эти частицы, все же движутся, но эти движения очень незначительны. Промежутки между частицами маленькие, поэтому другим веществам трудно проникнуть между ними. Процесс диффузии в твердых телах проходит очень медленно и незаметно для невооруженного глаза.

    Давайте посмотрим видео об этом:

    Узнав об особенностях протекания процесса диффузии в различных агрегатных состояниях, мы увидели, что процесс не одинаково быстр. От чего же зависит скорость диффузии? Один из ответов на этот вопрос у нас уже есть – скорость протекания процесса диффузии зависит от агрегатного состояния вещества.

    Мы с вами также знаем, что частички веществ начинают двигаться быстрее с увеличением температуры. Значит ли это, что и процесс диффузии будет ускоряться при повышении температуры? Ответ очевиден. Для подтверждения давайте просмотрим видео:

    Интенсивность диффундирования одного вещества в другое также зависит и от концентрации этих веществ, и от внешних воздействий (например, если просто капнуть раствор йода в воду и если его еще и перемешать, то скорость приобретения раствором однородного цвета будет разной).

    Выводы

    1.Агрегатное состояние вещества – это состояние вещества, которое можно охарактеризовать набором определенных свойств (например, сохранение или неспособность к сохранению объема, формы и т.д.) при определенных условиях. Не только вода может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Это присуще всем веществам.

    2.Диффузия - это процесс, заключающийся во взаимном проникновении молекул веществ в промежутки между молекулами в других веществах.

    3.Скорость диффузии зависит от: температуры, концентрации, внешних воздействий, агрегатного состояния вещества.

    Трудно переоценить процесс диффузии в жизни человека. Например, проникновение кислорода через тончайшую стенку альвеол в капилляры легких осуществляется именно благодаря диффузии. Стенки альвеол очень тонкие, с физической точки зрения, альвеолярная стенка – это полупроницаемая мембрана. Концентрация кислорода в атмосферном воздухе гораздо выше его концентрации и капиллярной крови, вот потому кислород и поникает сквозь полупроницаемую мембрану – туда, где его меньше. Благодаря диффузии мы дышим.

    Также этот процесс частично обеспечивает проникновение питательных веществ из пищеварительной системы в кровь и действие многих лекарств.

    На рисунке схематически показано, как всасываются питательные вещества в кишечнике человека.

    Рис. 4: тонкий кишечник млекопитающего

    Список литературы

    Урок на тему: «Диффузия в газах, жидкостях, твердых телах», автор Селезнева А. М., МОУ СОШ №7 г. Боярка, Киевской обл.

    Перышкин А. В. «Физика 7-й класс», Москва, Дрофа, 2006 г.

    Родина Н. А., Громов С. В., «Физика», М., Мир, 2002 г.

    Отредактировано и выслано Борисенко И.Н .

    Над уроком работали: