Logaritmi: primeri in rešitve. Opredelitev logaritma in njegovih lastnosti: teorija in reševanje problemov

Kot veste, se pri množenju izrazov s potencami njihovi eksponenti vedno seštevajo (a b *a c = a b+c). Ta matematični zakon je izpeljal Arhimed, pozneje, v 8. stoletju, pa je matematik Virasen ustvaril tabelo celih eksponentov. Prav ti so služili za nadaljnje odkrivanje logaritmov. Primere uporabe te funkcije je mogoče najti skoraj povsod, kjer morate poenostaviti okorno množenje s preprostim seštevanjem. Če porabite 10 minut za branje tega članka, vam bomo razložili, kaj so logaritmi in kako delati z njimi. V preprostem in dostopnem jeziku.

Definicija v matematiki

Logaritem je izraz v naslednji obliki: log a b=c, kar pomeni, da je logaritem katerega koli nenegativnega števila (to je katerega koli pozitivnega) "b" na njegovo osnovo "a" potenca "c". ”, na katero je treba dvigniti osnovo “a”, da na koncu dobimo vrednost “b”. Analizirajmo logaritem s primeri, recimo, da obstaja izraz log 2 8. Kako najti odgovor? Zelo preprosto je, najti morate takšno potenco, da od 2 do zahtevane potence dobite 8. Po nekaj izračunih v vaši glavi dobimo številko 3! In to je res, ker 2 na potenco 3 daje odgovor 8.

Vrste logaritmov

Za mnoge študente se ta tema zdi zapletena in nerazumljiva, vendar v resnici logaritmi niso tako strašljivi, glavna stvar je razumeti njihov splošni pomen in se spomniti njihovih lastnosti in nekaterih pravil. Obstajajo tri ločene vrste logaritemskih izrazov:

  1. Naravni logaritem ln a, kjer je osnova Eulerjevo število (e = 2,7).
  2. Decimalno a, kjer je osnova 10.
  3. Logaritem poljubnega števila b na osnovo a>1.

Vsak od njih je rešen na standarden način, vključno s poenostavitvijo, redukcijo in kasnejšo redukcijo na en sam logaritem z uporabo logaritemskih izrekov. Da bi dobili pravilne vrednosti logaritmov, se morate spomniti njihovih lastnosti in zaporedja dejanj pri njihovem reševanju.

Pravila in nekatere omejitve

V matematiki obstaja več pravil-omejitev, ki so sprejete kot aksiom, to pomeni, da niso predmet razprave in so resnica. Števil je na primer nemogoče deliti z nič, prav tako je nemogoče izluščiti sodi koren negativnih števil. Logaritmi imajo tudi svoja pravila, po katerih se zlahka naučite delati tudi z dolgimi in obsežnimi logaritemskimi izrazi:

  • Osnova "a" mora biti vedno večja od nič in ne enaka 1, sicer bo izraz izgubil svoj pomen, ker sta "1" in "0" do katere koli stopnje vedno enaka svojim vrednostim;
  • če je a > 0, potem a b >0, se izkaže, da mora biti tudi "c" večji od nič.

Kako rešiti logaritme?

Naloga je na primer najti odgovor na enačbo 10 x = 100. To je zelo enostavno, izbrati morate potenco tako, da povišate število deset, na kar dobimo 100. To je seveda 10 2 = 100.

Zdaj predstavimo ta izraz v logaritemski obliki. Dobimo log 10 100 = 2. Pri reševanju logaritmov se vsa dejanja praktično konvergirajo, da bi našli potenco, na katero je treba vnesti osnovo logaritma, da dobimo dano število.

Če želite natančno določiti vrednost neznane stopnje, se morate naučiti delati s tabelo stopinj. Videti je takole:

Kot lahko vidite, lahko nekatere eksponente ugibate intuitivno, če imate tehnično miselnost in poznavanje tabele množenja. Vendar pa boste za večje vrednosti potrebovali tabelo moči. Uporabljajo ga lahko tudi tisti, ki o zapletenih matematičnih temah ne vedo prav nič. Levi stolpec vsebuje števila (osnova a), zgornja vrstica števil je vrednost potence c, na katero je povzdignjeno število a. Na presečišču celice vsebujejo številske vrednosti, ki so odgovor (a c =b). Vzemimo na primer prvo celico s številko 10 in jo kvadriramo, dobimo vrednost 100, ki je navedena na presečišču naših dveh celic. Vse je tako preprosto in enostavno, da bo razumel tudi najbolj pravi humanist!

Enačbe in neenačbe

Izkazalo se je, da je pod določenimi pogoji eksponent logaritem. Zato lahko vse matematične numerične izraze zapišemo kot logaritemsko enakost. Na primer, 3 4 =81 lahko zapišemo kot osnovni logaritem 3 od 81, ki je enak štirim (log 3 81 = 4). Za negativne potence so pravila enaka: 2 -5 = 1/32 zapišemo kot logaritem, dobimo log 2 (1/32) = -5. Eden najbolj fascinantnih delov matematike je tema "logaritmov". Spodaj si bomo ogledali primere in rešitve enačb, takoj po študiju njihovih lastnosti. Zdaj pa poglejmo, kako so videti neenakosti in kako jih ločiti od enačb.

Podan je naslednji izraz: log 2 (x-1) > 3 - gre za logaritemsko neenakost, saj je neznana vrednost “x” pod logaritemskim predznakom. In tudi v izrazu se primerjata dve količini: logaritem želenega števila na osnovi dve je večji od števila tri.

Najpomembnejša razlika med logaritemskimi enačbami in neenačbami je v tem, da enačbe z logaritmi (na primer logaritem 2 x = √9) pomenijo eno ali več določenih številskih vrednosti v odgovoru, medtem ko pri reševanju neenačbe oboje obseg sprejemljivih vrednosti in točke so določene s prelomom te funkcije. Posledično odgovor ni preprost niz posameznih števil, kot pri odgovoru na enačbo, temveč neprekinjen niz ali niz števil.

Osnovni izreki o logaritmih

Pri reševanju primitivnih nalog iskanja vrednosti logaritma njegove lastnosti morda niso znane. Ko pa gre za logaritemske enačbe ali neenačbe, je najprej treba jasno razumeti in v praksi uporabiti vse osnovne lastnosti logaritmov. Pozneje si bomo ogledali primere enačb; najprej si podrobneje oglejmo vsako lastnost.

  1. Glavna identiteta je videti takole: a logaB =B. Velja le, če je a večje od 0, ni enako ena, in je B večji od nič.
  2. Logaritem produkta je mogoče predstaviti z naslednjo formulo: log d (s 1 * s 2) = log d s 1 + log d s 2. V tem primeru je obvezen pogoj: d, s 1 in s 2 > 0; a≠1. Za to logaritemsko formulo lahko navedete dokaz s primeri in rešitvijo. Naj bo log a s 1 = f 1 in log a s 2 = f 2, potem je a f1 = s 1, a f2 = s 2. Dobimo, da je s 1 * s 2 = a f1 *a f2 = a f1+f2 (lastnosti stopinj ), nato pa po definiciji: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, kar je bilo treba dokazati.
  3. Logaritem količnika izgleda takole: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Izrek v obliki formule ima naslednjo obliko: log a q b n = n/q log a b.

Ta formula se imenuje "lastnost stopnje logaritma." Podobna je lastnostim navadnih stopinj in ni presenetljivo, saj vsa matematika temelji na naravnih postulatih. Poglejmo dokaz.

Naj bo log a b = t, izkaže se, da je a t =b. Če oba dela dvignemo na potenco m: a tn = b n ;

ker pa je a tn = (a q) nt/q = b n, torej log a q b n = (n*t)/t, potem je log a q b n = n/q log a b. Izrek je dokazan.

Primeri problemov in neenakosti

Najpogostejše vrste problemov o logaritmih so primeri enačb in neenačb. Najdemo jih v skoraj vseh učbenikih in so tudi obvezen del izpitov iz matematike. Če želite vstopiti na univerzo ali opraviti sprejemne izpite iz matematike, morate vedeti, kako pravilno rešiti takšne naloge.

Na žalost ni enotnega načrta ali sheme za reševanje in določanje neznane vrednosti logaritma, vendar je mogoče za vsako matematično neenakost ali logaritemsko enačbo uporabiti določena pravila. Najprej morate ugotoviti, ali je izraz mogoče poenostaviti ali zmanjšati na splošno obliko. Dolge logaritemske izraze lahko poenostavite, če pravilno uporabite njihove lastnosti. Hitro jih spoznajmo.

Pri reševanju logaritemskih enačb moramo ugotoviti, kakšno vrsto logaritma imamo: primer izraza lahko vsebuje naravni ali decimalni logaritem.

Tukaj sta primera ln100, ln1026. Njihova rešitev se skrči na dejstvo, da morajo določiti potenco, pri kateri bo osnova 10 enaka 100 oziroma 1026. Za reševanje naravnih logaritmov morate uporabiti logaritemske identitete ali njihove lastnosti. Oglejmo si primere reševanja logaritemskih problemov različnih vrst.

Kako uporabljati logaritemske formule: s primeri in rešitvami

Torej, poglejmo primere uporabe osnovnih izrekov o logaritmih.

  1. Lastnost logaritma produkta lahko uporabimo pri nalogah, kjer je treba razstaviti veliko vrednost števila b na enostavnejše faktorje. Na primer, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Odgovor je 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - kot lahko vidite, nam je z uporabo četrte lastnosti potence logaritma uspelo rešiti na videz zapleten in nerešljiv izraz. Preprosto morate faktorizirati osnovo in nato vzeti vrednosti eksponenta iz znaka logaritma.

Naloge iz enotnega državnega izpita

Logaritme pogosto najdemo na sprejemnih izpitih, zlasti veliko logaritemskih problemov na Enotnem državnem izpitu (državni izpit za vse maturante). Običajno te naloge niso prisotne le v delu A (najlažji testni del izpita), ampak tudi v delu C (najbolj zapletene in obsežne naloge). Izpit zahteva natančno in popolno poznavanje teme “Naravni logaritmi”.

Primeri in rešitve problemov so vzeti iz uradnih različic enotnega državnega izpita. Poglejmo, kako se takšne naloge rešujejo.

Podan log 2 (2x-1) = 4. Rešitev:
prepišimo izraz in ga malo poenostavimo log 2 (2x-1) = 2 2, po definiciji logaritma dobimo, da je 2x-1 = 2 4, torej 2x = 17; x = 8,5.

  • Najbolje je reducirati vse logaritme na isto osnovo, da rešitev ne bo okorna in zmedena.
  • Vsi izrazi pod znakom za logaritem so označeni kot pozitivni, zato mora biti izraz, ki ostane pod znakom za logaritem, pozitiven, ko je eksponent izraza, ki je pod znakom za logaritem in kot njegova osnova, vzet kot množitelj.

    Začnimo z lastnosti logaritma ena. Njegova formulacija je naslednja: logaritem enote je enak nič, tj. log a 1=0 za vsak a>0, a≠1. Dokaz ni težaven: ker je a 0 =1 za vsak a, ki izpolnjuje zgornje pogoje a>0 in a≠1, potem enakost log a 1=0, ki jo je treba dokazati, neposredno sledi iz definicije logaritma.

    Navedimo primere uporabe obravnavane lastnosti: log 3 1=0, log1=0 in .

    Pojdimo na naslednjo lastnost: logaritem števila, ki je enako osnovi, je enak ena, to je log a a=1 za a>0, a≠1. Dejansko, ker je a 1 =a za vsak a, potem je po definiciji logaritma log a a=1.

    Primeri uporabe te lastnosti logaritmov so enakosti log 5 5=1, log 5,6 5,6 in lne=1.

    Na primer, log 2 2 7 =7, log10 -4 =-4 in .

    Logaritem produkta dveh pozitivnih števil x in y je enak produktu logaritmov teh števil: log a (x y)=log a x+log a y, a>0 , a≠1 . Dokažimo lastnost logaritma produkta. Zaradi lastnosti stopnje a log a x+log a y =a log a x ·a log a y, in ker je po glavni logaritemski istovetnosti log a x =x in log a y =y, potem je log a x ·a log a y =x·y. Tako je log a x+log a y =x·y, iz česar po definiciji logaritma sledi enakost, ki jo dokazujemo.

    Pokažimo primere uporabe lastnosti logaritma produkta: log 5 (2 3)=log 5 2+log 5 3 in .

    Lastnost logaritma zmnožka lahko posplošimo na zmnožek končnega števila n pozitivnih števil x 1 , x 2 , …, x n kot log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . To enakost je mogoče brez težav dokazati.

    Na primer, naravni logaritem produkta lahko nadomestimo z vsoto treh naravnih logaritmov števil 4, e in.

    Logaritem količnika dveh pozitivnih števil x in y je enaka razliki med logaritma teh števil. Lastnost logaritma količnika ustreza formuli oblike , kjer so a>0, a≠1, x in y nekaj pozitivnih števil. Veljavnost te formule je dokazana kot tudi formula za logaritem produkta: saj , potem po definiciji logaritma.

    Tukaj je primer uporabe te lastnosti logaritma: .

    Pojdimo naprej lastnost logaritma potence. Logaritem stopnje je enak zmnožku eksponenta in logaritma modula osnove te stopnje. Zapišimo to lastnost logaritma potence kot formulo: log a b p =p·log a |b|, kjer so a>0, a≠1, b in p takšna števila, da je stopnja b p smiselna in b p >0.

    Najprej dokažemo to lastnost za pozitivni b. Osnovna logaritemska istovetnost nam omogoča, da število b predstavimo kot log a b , potem je b p =(a log a b) p , dobljeni izraz pa je zaradi lastnosti potence enak a p·log a b . Tako pridemo do enakosti b p =a p·log a b, iz katere po definiciji logaritma sklepamo, da je log a b p =p·log a b.

    To lastnost moramo še dokazati za negativni b. Pri tem upoštevamo, da je izraz log a b p za negativni b smiseln samo za sode eksponente p (ker mora biti vrednost stopnje b p večja od nič, sicer logaritem ne bo imel smisla), v tem primeru pa b p =|b| str. Potem b p =|b| p =(a log a |b|) p =a p·log a |b|, od koder je log a b p =p·log a |b| .

    npr. in ln(-3) 4 =4·ln|-3|=4·ln3 .

    Izhaja iz prejšnje lastnosti lastnost logaritma iz korena: logaritem n-tega korena je enak zmnožku ulomka 1/n z logaritmom radikalnega izraza, to je, , kjer je a>0, a≠1, n naravno število, večje od ena, b>0.

    Dokaz temelji na enakosti (glej), ki velja za vsak pozitivni b, in lastnosti logaritma potence: .

    Tukaj je primer uporabe te lastnosti: .

    Zdaj pa dokažimo formula za premik na novo logaritemsko osnovo prijazen . Za to je dovolj dokazati veljavnost enakosti log c b=log a b·log c a. Osnovna logaritemska identiteta nam omogoča, da število b predstavimo kot log a b , potem pa log c b=log c a log a b . Ostaja še uporaba lastnosti logaritma stopnje: log c a log a b =log a b log c a. S tem je dokazana enakost log c b=log a b·log c a, kar pomeni, da je dokazana tudi formula za prehod na novo osnovo logaritma.

    Pokažimo nekaj primerov uporabe te lastnosti logaritmov: in .

    Formula za prehod na novo bazo vam omogoča, da nadaljujete z delom z logaritmi, ki imajo "priročno" bazo. Uporabite ga lahko na primer za premikanje na naravne ali decimalne logaritme, tako da lahko izračunate vrednost logaritma iz tabele logaritmov. Formula za premik na novo bazo logaritma v nekaterih primerih omogoča tudi iskanje vrednosti danega logaritma, ko so znane vrednosti nekaterih logaritmov z drugimi bazami.

    Pogosto se uporablja poseben primer formule za prehod na novo logaritemsko osnovo za c=b obrazca . To kaže, da sta log a b in log b a – . npr. .

    Pogosto se uporablja tudi formula , kar je priročno za iskanje vrednosti logaritma. Za potrditev naših besed bomo pokazali, kako se lahko uporabi za izračun vrednosti logaritma oblike . Imamo . Da dokažem formulo dovolj je uporabiti formulo za prehod na novo osnovo logaritma a: .

    Ostaja še dokazati lastnosti primerjave logaritmov.

    Dokažimo, da za poljubna pozitivna števila b 1 in b 2 velja b 1 log a b 2 in za a>1 – neenakost log a b 1

    Nazadnje je treba dokazati še zadnjo od naštetih lastnosti logaritmov. Omejimo se na dokaz njegovega prvega dela, to je dokazali bomo, da če je a 1 >1, a 2 >1 in a 1 1 je res log a 1 b>log a 2 b . Preostale trditve te lastnosti logaritmov dokazujemo po podobnem principu.

    Uporabimo nasprotno metodo. Recimo, da je za a 1 >1, a 2 >1 in a 1 1 je res log a 1 b≤log a 2 b . Na podlagi lastnosti logaritmov lahko te neenakosti prepišemo kot in in iz njih sledi, da je log b a 1 ≤log b a 2 oziroma log b a 1 ≥log b a 2. Potem morata glede na lastnosti potence z enakimi bazami veljati enakosti b log b a 1 ≥b log b a 2 in b log b a 1 ≥b log b a 2, torej a 1 ≥a 2 . Tako smo prišli do protislovja s pogojem a 1

Bibliografija.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. in drugi Algebra in začetki analize: učbenik za 10.-11.
  • Gusev V.A., Mordkovich A.G. Matematika (priročnik za vpisnike v tehnične šole).

Logaritemski izrazi, reševanje primerov. V tem članku si bomo ogledali probleme, povezane z reševanjem logaritmov. Naloge postavljajo vprašanje iskanja pomena izraza. Opozoriti je treba, da se koncept logaritma uporablja v številnih nalogah in da je razumevanje njegovega pomena izjemno pomembno. Kar se tiče enotnega državnega izpita, se logaritem uporablja pri reševanju enačb, pri uporabnih problemih in tudi pri nalogah, povezanih s študijem funkcij.

Naj navedemo primere, da razumemo sam pomen logaritma:


Osnovna logaritemska identiteta:

Lastnosti logaritmov, ki si jih morate vedno zapomniti:

*Logaritem produkta je enak vsoti logaritmov faktorjev.

* * *

*Logaritem količnika (ulomka) je enak razliki med logaritmi faktorjev.

* * *

*Logaritem eksponenta je enak produktu eksponenta in logaritma njegove osnove.

* * *

*Prehod na novo podlago

* * *

Več nepremičnin:

* * *

Izračun logaritmov je tesno povezan z uporabo lastnosti eksponentov.

Naštejmo jih nekaj:

Bistvo te lastnosti je, da ko se števec prenese na imenovalec in obratno, se znak eksponenta spremeni v nasprotno. Na primer:

Posledica te lastnosti:

* * *

Pri povišanju potence na potenco ostane osnova enaka, eksponenti pa se pomnožijo.

* * *

Kot ste videli, je sam koncept logaritma preprost. Glavna stvar je, da potrebujete dobro prakso, ki vam daje določeno spretnost. Seveda je potrebno poznavanje formul. Če spretnost pretvorbe osnovnih logaritmov ni bila razvita, potem lahko pri reševanju preprostih nalog zlahka naredite napako.

Vadite, najprej rešite najpreprostejše primere iz tečaja matematike, nato preidite na zahtevnejše. V prihodnosti bom zagotovo pokazal, kako se rešujejo "strašljivi" logaritmi; ne bodo se pojavili na Enotnem državnem izpitu, vendar so zanimivi, ne zamudite jih!

To je vse! Srečno!

S spoštovanjem, Alexander Krutitskikh

P.S: Hvaležen bi bil, če bi mi povedali o spletnem mestu na družbenih omrežjih.

Ohranjanje vaše zasebnosti je za nas pomembno. Iz tega razloga smo razvili Politiko zasebnosti, ki opisuje, kako uporabljamo in shranjujemo vaše podatke. Preglejte naše postopke varovanja zasebnosti in nam sporočite, če imate kakršna koli vprašanja.

Zbiranje in uporaba osebnih podatkov

Osebni podatki se nanašajo na podatke, ki jih je mogoče uporabiti za identifikacijo ali vzpostavitev stika z določeno osebo.

Kadar koli stopite v stik z nami, boste morda morali posredovati svoje osebne podatke.

Spodaj je nekaj primerov vrst osebnih podatkov, ki jih lahko zbiramo, in kako lahko te podatke uporabimo.

Katere osebne podatke zbiramo:

  • Ko na spletnem mestu oddate prijavo, lahko zberemo različne podatke, vključno z vašim imenom, telefonsko številko, e-poštnim naslovom itd.

Kako uporabljamo vaše osebne podatke:

  • Osebni podatki, ki jih zbiramo, nam omogočajo, da vas kontaktiramo z edinstvenimi ponudbami, promocijami in drugimi dogodki ter prihajajočimi dogodki.
  • Občasno lahko uporabimo vaše osebne podatke za pošiljanje pomembnih obvestil in sporočil.
  • Osebne podatke lahko uporabljamo tudi za interne namene, kot so izvajanje revizij, analize podatkov in različne raziskave, da bi izboljšali storitve, ki jih nudimo, in vam dali priporočila glede naših storitev.
  • Če sodelujete v nagradni igri, tekmovanju ali podobni promociji, lahko podatke, ki jih posredujete, uporabimo za upravljanje takih programov.

Razkritje informacij tretjim osebam

Prejetih podatkov ne razkrivamo tretjim osebam.

Izjeme:

  • Če je potrebno - v skladu z zakonom, sodnim postopkom, v sodnem postopku in/ali na podlagi javnih zahtev ali zahtev državnih organov na ozemlju Ruske federacije - za razkritje vaših osebnih podatkov. Podatke o vas lahko razkrijemo tudi, če ugotovimo, da je takšno razkritje potrebno ali primerno za varnostne namene, namene kazenskega pregona ali druge javne pomembne namene.
  • V primeru reorganizacije, združitve ali prodaje lahko osebne podatke, ki jih zberemo, prenesemo na ustrezno naslednico tretje osebe.

Varstvo osebnih podatkov

Izvajamo previdnostne ukrepe – vključno z administrativnimi, tehničnimi in fizičnimi – za zaščito vaših osebnih podatkov pred izgubo, krajo in zlorabo ter nepooblaščenim dostopom, razkritjem, spreminjanjem in uničenjem.

Spoštovanje vaše zasebnosti na ravni podjetja

Da bi zagotovili varnost vaših osebnih podatkov, svojim zaposlenim sporočamo standarde zasebnosti in varnosti ter strogo uveljavljamo prakse glede zasebnosti.

Danes bomo govorili o logaritemske formule in navedite okvirno primeri rešitev.

Sami nakazujejo vzorce rešitev glede na osnovne lastnosti logaritmov. Preden uporabimo logaritemske formule za reševanje, naj vas spomnimo na vse lastnosti:

Zdaj bomo na podlagi teh formul (lastnosti) pokazali primeri reševanja logaritmov.

Primeri reševanja logaritmov na podlagi formul.

Logaritem pozitivno število b na osnovo a (označeno z log a b) je eksponent, na katerega je treba dvigniti a, da dobimo b, pri čemer je b > 0, a > 0 in 1.

Po definiciji je log a b = x, kar je enakovredno a x = b, torej log a a x = x.

Logaritmi, primeri:

log 2 8 = 3, ker 2 3 = 8

dnevnik 7 49 = 2, ker 7 2 = 49

log 5 1/5 = -1, ker 5 -1 = 1/5

Decimalni logaritem- to je navaden logaritem, katerega osnova je 10. Označena je kot lg.

log 10 100 = 2, ker 10 2 = 100

Naravni logaritem- tudi navaden logaritem logaritem, vendar z osnovo e (e = 2,71828... - iracionalno število). Označeno kot ln.

Formule oziroma lastnosti logaritmov si je priporočljivo zapomniti, saj jih bomo kasneje potrebovali pri reševanju logaritmov, logaritemskih enačb in neenačb. Ponovno preučimo vsako formulo s primeri.

  • Osnovna logaritemska identiteta
    hlod a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Logaritem produkta je enak vsoti logaritmov
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Logaritem količnika je enak razliki logaritmov
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Lastnosti potence logaritemskega števila in osnove logaritma

    Eksponent logaritemskega števila log a b m = mlog a b

    Eksponent osnove logaritma log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    če je m = n, dobimo log a n b n = log a b

    dnevnik 4 9 = dnevnik 2 2 3 2 = dnevnik 2 3

  • Prehod na novo podlago
    log a b = log c b/log c a,

    če je c = b, dobimo log b b = 1

    potem je log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Kot lahko vidite, formule za logaritme niso tako zapletene, kot se zdijo. Zdaj, ko smo si ogledali primere reševanja logaritmov, lahko preidemo na logaritemske enačbe. Primere reševanja logaritemskih enačb si bomo podrobneje ogledali v članku: "". Ne spreglejte!

Če imate še vedno vprašanja o rešitvi, jih napišite v komentarje k članku.

Opomba: odločili smo se za drug razred izobraževanja in študij v tujini kot možnost.