Primeri množenja ulomkov. Množenje navadnih ulomkov: pravila, primeri, rešitve

Navadna ulomna števila se prvič srečajo s šolarji v 5. razredu in jih spremljajo skozi vse življenje, saj je v vsakdanjem življenju pogosto treba obravnavati ali uporabljati predmet ne kot celoto, temveč v ločenih delih. Začnite preučevati to temo - delnice. Deleži so enaki, na katerega je razdeljen ta ali oni predmet. Navsezadnje ni vedno mogoče izraziti na primer dolžine ali cene izdelka kot celega števila; treba je upoštevati dele ali ulomke neke mere. Sama beseda "frakcija", ki je nastala iz glagola "razdeliti" - razdeliti na dele in ima arabske korenine, se je pojavila v ruskem jeziku v 8. stoletju.

Ulomki so dolgo veljali za najtežjo vejo matematike. V 17. stoletju, ko so se pojavili prvi učbeniki matematike, so jih imenovali »zlomljena števila«, kar je bilo ljudem zelo težko razumljivo.

Sodobno obliko preprostih ulomkov, katerih deli so ločeni z vodoravno črto, je prvi promoviral Fibonacci - Leonardo iz Pise. Njegova dela so datirana v leto 1202. Toda namen tega članka je bralcu preprosto in jasno razložiti, kako se množijo mešani ulomki z različnimi imenovalci.

Množenje ulomkov z različnimi imenovalci

Na začetku je vredno določiti vrste ulomkov:

  • pravilno;
  • nepravilno;
  • mešano.

Nato se morate spomniti, kako se množijo delna števila z enakimi imenovalci. Samega pravila tega postopka ni težko oblikovati neodvisno: rezultat množenja preprostih ulomkov z enakimi imenovalci je frakcijski izraz, katerega števec je produkt števcev, imenovalec pa produkt imenovalcev teh ulomkov. . To pomeni, da je novi imenovalec kvadrat enega od prvotno obstoječih.

Pri množenju enostavni ulomki z različnimi imenovalci za dva ali več dejavnikov se pravilo ne spremeni:

a/b * c/d = a*c / b*d.

Edina razlika je v tem, da bo oblikovano število pod ulomno črto produkt različnih števil in ga seveda ni mogoče imenovati kvadrat enega številskega izraza.

Vredno je razmisliti o množenju ulomkov z različnimi imenovalci na primerih:

  • 8/ 9 * 6/ 7 = 8*6 / 9*7 = 48/ 63 = 16/2 1 ;
  • 4/ 6 * 3/ 7 = 2/ 3 * 3/7 <> 2*3 / 3*7 = 6/ 21 .

Primeri uporabljajo metode za zmanjševanje ulomkov. Številke števcev lahko zmanjšate samo z imenovalci; sosednjih faktorjev nad ali pod ulomkovo črto ni mogoče zmanjšati.

Skupaj s preprostimi ulomki obstaja koncept mešanih ulomkov. Mešano število je sestavljeno iz celega in delnega dela, to je vsota teh števil:

1 4/ 11 =1 + 4/ 11.

Kako deluje množenje?

Za razmislek je na voljo več primerov.

2 1/ 2 * 7 3/ 5 = 2 + 1/ 2 * 7 + 3/ 5 = 2*7 + 2* 3/ 5 + 1/ 2 * 7 + 1/ 2 * 3/ 5 = 14 + 6/5 + 7/ 2 + 3/ 10 = 14 + 12/ 10 + 35/ 10 + 3/ 10 = 14 + 50/ 10 = 14 + 5=19.

Primer uporablja množenje števila s navaden ulomek, lahko pravilo za to dejanje zapišemo kot:

a* b/c = a*b /c.

Pravzaprav je tak izdelek vsota enakih delnih ostankov, število členov pa označuje to naravno število. Poseben primer:

4 * 12/ 15 = 12/ 15 + 12/ 15 + 12/ 15 + 12/ 15 = 48/ 15 = 3 1/ 5.

Obstaja še ena rešitev za množenje števila z ulomkom. Samo imenovalec morate deliti s tem številom:

d* e/f = e/f: d.

Ta tehnika je uporabna za uporabo, ko je imenovalec deljen z naravnim številom brez ostanka ali, kot pravijo, s celim številom.

Mešana števila pretvorimo v neprave ulomke in dobimo zmnožek na prej opisan način:

1 2/ 3 * 4 1/ 5 = 5/ 3 * 21/ 5 = 5*21 / 3*5 =7.

Ta primer vključuje način predstavitve mešanega ulomka kot nepravilnega ulomka in ga je mogoče predstaviti tudi kot splošno formulo:

a bc = a*b+ c / c, kjer se imenovalec novega ulomka tvori tako, da se cel del pomnoži z imenovalcem in sešteje s števcem prvotnega ulomkovega ostanka, imenovalec pa ostane enak.

Ta proces deluje tudi v nasprotni smeri. Če želite ločiti cel del in delni ostanek, morate števec nepravilnega ulomka razdeliti na njegov imenovalec s pomočjo "kota".

Množenje nepravilnih ulomkov proizvedeno na splošno sprejet način. Ko pišete pod eno ulomkovo črto, morate ulomke po potrebi zmanjšati, da s to metodo zmanjšate števila in olajšate izračun rezultata.

Na internetu je veliko pomočnikov za reševanje celo zapletenih matematičnih problemov v različnih različicah programov. Zadostno število tovrstnih storitev ponuja pomoč pri računanju množenja ulomkov z različnimi števili v imenovalcih – tako imenovani spletni kalkulatorji za računanje ulomkov. Sposobni so ne le množiti, ampak tudi izvajati vse druge preproste računske operacije z navadnimi ulomki in mešanimi števili. Delo ni težko, na spletni strani izpolnite ustrezna polja, izberete znak matematične operacije in kliknete »izračunaj«. Program izračuna samodejno.

Tematika računskih operacij z ulomki je aktualna skozi celotno izobraževanje srednješolcev in srednješolcev. V srednji šoli ne obravnavajo več najpreprostejše vrste, ampak celi ulomki, vendar se znanje o pravilih za transformacijo in izračunih, pridobljenih prej, uporablja v izvirni obliki. Dobro obvladano osnovno znanje daje popolno zaupanje pri uspešnem reševanju najzahtevnejših problemov.

Za zaključek je smiselno navesti besede Leva Nikolajeviča Tolstoja, ki je zapisal: »Človek je delček. Človek ni v moči, da poveča svoj števec - svoje zasluge - lahko pa vsak zmanjša svoj imenovalec - svoje mnenje o sebi in se s tem zmanjšanjem približa svoji popolnosti.

Zadnjič smo se naučili seštevati in odštevati ulomke (glej lekcijo »Seštevanje in odštevanje ulomkov«). Najtežji del teh dejanj je bilo spravljanje ulomkov na skupni imenovalec.

Zdaj je čas, da se ukvarjamo z množenjem in deljenjem. Dobra novica je, da so te operacije celo preprostejše od seštevanja in odštevanja. Najprej si oglejmo najpreprostejši primer, ko obstajata dva pozitivna ulomka brez ločenega celega dela.

Če želite pomnožiti dva ulomka, morate ločeno pomnožiti njune števce in imenovalce. Prvo število bo števec novega ulomka, drugo pa imenovalec.

Če želite razdeliti dva ulomka, morate prvi ulomek pomnožiti z "obrnjenim" drugim ulomkom.

Oznaka:

Iz definicije sledi, da se deljenje ulomkov zmanjša na množenje. Če želite "obrniti" ulomek, preprosto zamenjajte števec in imenovalec. Zato bomo skozi lekcijo obravnavali predvsem množenje.

Kot rezultat množenja lahko nastane (in pogosto nastane) zmanjšljiv ulomek - seveda ga je treba zmanjšati. Če se po vseh zmanjšanjih izkaže, da ulomek ni pravilen, je treba poudariti cel del. Toda tisto, kar se pri množenju zagotovo ne bo zgodilo, je redukcija na skupni imenovalec: brez navzkrižnih metod, največji faktorji in najmanjši skupni večkratniki.

Po definiciji imamo:

Množenje ulomkov s celimi deli in negativnimi ulomki

Če ulomki vsebujejo celo število, jih je treba pretvoriti v nepravilne - in šele nato pomnožiti v skladu z zgoraj navedenimi shemami.

Če je v števcu ulomka, v imenovalcu ali pred njim minus, ga lahko izločimo iz množenja ali popolnoma odstranimo po naslednjih pravilih:

  1. Plus z minusom daje minus;
  2. Dve nikalnici pomenita pritrdilno.

Doslej so se s temi pravili srečevali le pri seštevanju in odštevanju negativnih ulomkov, ko se je bilo treba znebiti celega dela. Za delo jih je mogoče posplošiti, da bi "zažgali" več pomanjkljivosti hkrati:

  1. Negative prečrtamo v parih, dokler popolnoma ne izginejo. V skrajnih primerih lahko preživi en minus - tisti, za katerega ni bilo para;
  2. Če ni več minusov, je operacija končana - lahko začnete množiti. Če zadnji minus ni prečrtan, ker zanj ni bilo para, ga vzamemo izven meja množenja. Rezultat je negativen ulomek.

Naloga. Poiščite pomen izraza:

Vse ulomke pretvorimo v neprave, nato pa iz množenja odstranimo minuse. Kar ostane, pomnožimo po običajnih pravilih. Dobimo:

Naj vas še enkrat spomnim, da se minus, ki se pojavi pred ulomkom s poudarjenim celim delom, nanaša prav na celoten ulomek in ne le na njegov cel del (to velja za zadnja dva primera).

Pozorni bodite tudi na negativna števila: pri množenju so v oklepajih. To se naredi zato, da ločimo minuse od znakov množenja in naredimo celoten zapis natančnejši.

Zmanjševanje ulomkov sproti

Množenje je zelo delovno intenzivna operacija. Številke tukaj se izkažejo za precej velike in za poenostavitev težave lahko poskusite ulomek še zmanjšati pred množenjem. V bistvu so števci in imenovalci ulomkov navadni faktorji, zato jih je mogoče zmanjšati z uporabo osnovne lastnosti ulomka. Oglejte si primere:

Naloga. Poiščite pomen izraza:

Po definiciji imamo:

V vseh primerih so z rdečo označena števila, ki so bila zmanjšana, in tisto, kar je od njih ostalo.

Opomba: v prvem primeru so bili množitelji popolnoma zmanjšani. Na njihovem mestu ostanejo enote, ki jih na splošno ni treba pisati. V drugem primeru ni bilo mogoče doseči popolnega zmanjšanja, vendar se je skupna količina izračunov vseeno zmanjšala.

Vendar te tehnike nikoli ne uporabljajte pri seštevanju in odštevanju ulomkov! Da, včasih so podobne številke, ki jih želite samo zmanjšati. Tukaj, poglej:

Tega ne smeš!

Do napake pride, ker pri seštevanju števec ulomka ustvari vsoto in ne produkt števil. Posledično je nemogoče uporabiti osnovno lastnost ulomka, saj se ta lastnost ukvarja posebej z množenjem števil.

Drugih razlogov za zmanjševanje ulomkov preprosto ni, zato je pravilna rešitev prejšnjega problema videti takole:

Pravilna rešitev:

Kot lahko vidite, se pravilni odgovor ni izkazal za tako lepega. Na splošno bodite previdni.

V petem stoletju pred našim štetjem je starogrški filozof Zenon iz Eleje oblikoval svoje znamenite aporije, med katerimi je najbolj znana aporija »Ahil in želva«. Takole zveni:

Recimo, da Ahil teče desetkrat hitreje od želve in je tisoč korakov za njo. V času, ki ga Ahil potrebuje, da preteče to razdaljo, bo želva odplazila sto korakov v isto smer. Ko Ahil preteče sto korakov, se želva plazi še deset korakov in tako naprej. Proces se bo nadaljeval ad infinitum, Ahil ne bo nikoli dohitel želve.

To razmišljanje je postalo logični šok za vse naslednje generacije. Aristotel, Diogen, Kant, Hegel, Hilbert ... Vsi so tako ali drugače obravnavali Zenonove aporije. Šok je bil tako močan, da " ... razprave se nadaljujejo še danes, znanstvena skupnost še ni uspela priti do enotnega mnenja o bistvu paradoksov ... v preučevanje problematike so bili vključeni matematična analiza, teorija množic, novi fizikalni in filozofski pristopi ; nobeden od njih ni postal splošno sprejeta rešitev problema ..."[Wikipedia, "Zeno's Aporia". Vsi razumejo, da so preslepljeni, vendar nihče ne razume, v čem je prevara.

Z matematičnega vidika je Zenon v svoji aporiji jasno prikazal prehod od kvantitete k . Ta prehod pomeni uporabo namesto stalnih. Kolikor razumem, matematični aparat za uporabo spremenljivih merskih enot še ni bil razvit ali pa ni bil uporabljen pri Zenonovi aporiji. Uporaba naše običajne logike nas pripelje v past. Mi pa zaradi vztrajnosti mišljenja na recipročno vrednost dodajamo stalne časovne enote. S fizičnega vidika je to videti kot upočasnjevanje časa, dokler se popolnoma ne ustavi v trenutku, ko Ahil dohiti želvo. Če se čas ustavi, Ahil ne more več prehiteti želve.

Če obrnemo našo običajno logiko, se vse postavi na svoje mesto. Ahil teče s konstantno hitrostjo. Vsak naslednji segment njegove poti je desetkrat krajši od prejšnjega. Skladno s tem je čas, porabljen za njegovo premagovanje, desetkrat manjši od prejšnjega. Če v tej situaciji uporabimo koncept "neskončnosti", potem bi bilo pravilno reči, da bo Ahil dohitel želvo neskončno hitro."

Kako se izogniti tej logični pasti? Ostanite v stalnih časovnih enotah in ne preklopite na recipročne enote. V Zenonovem jeziku je to videti takole:

V času, ki ga potrebuje Ahil, da preteče tisoč korakov, bo želva odplazila sto korakov v isto smer. V naslednjem časovnem intervalu, ki je enak prvemu, bo Ahil pretekel še tisoč korakov, želva pa se bo plazila sto korakov. Zdaj je Ahil osemsto korakov pred želvo.

Ta pristop ustrezno opisuje realnost brez logičnih paradoksov. Vendar to ni popolna rešitev problema. Einsteinova izjava o neustavljivosti svetlobne hitrosti je zelo podobna Zenonovi aporiji "Ahil in želva". Ta problem moramo še preučiti, premisliti in rešiti. In rešitev je treba iskati ne v neskončno velikem številu, ampak v merskih enotah.

Druga zanimiva Zenonova aporija govori o leteči puščici:

Leteča puščica je negibna, saj v vsakem trenutku miruje, in ker v vsakem trenutku miruje, vedno miruje.

V tej aporiji je logični paradoks premagan zelo preprosto - dovolj je pojasniti, da leteča puščica v vsakem trenutku miruje na različnih točkah v prostoru, kar je pravzaprav gibanje. Tukaj je treba opozoriti na drugo točko. Iz ene fotografije avtomobila na cesti ni mogoče ugotoviti niti dejstva njegovega gibanja niti razdalje do njega. Če želite ugotoviti, ali se avto premika, potrebujete dve fotografiji, posneti z iste točke v različnih časovnih točkah, vendar ne morete določiti razdalje od njiju. Za določitev razdalje do avtomobila potrebujete dve fotografiji, posneti iz različnih točk v prostoru v enem trenutku, vendar iz njih ne morete ugotoviti dejstva gibanja (seveda še vedno potrebujete dodatne podatke za izračune, trigonometrija vam bo pomagala ). Posebno pozornost želim opozoriti na to, da sta dve točki v času in dve točki v prostoru različni stvari, ki ju ne smemo mešati, saj ponujata različne možnosti za raziskovanje.

Sreda, 4. julij 2018

Razlike med množico in množico so zelo dobro opisane na Wikipediji. Pa poglejmo.

Kot lahko vidite, »v nizu ne moreta biti dva enaka elementa«, če pa so v nizu enaki elementi, se tak niz imenuje »multiset«. Razumna bitja ne bodo nikoli razumela takšne absurdne logike. To je raven govorečih papig in dresiranih opic, ki nimajo pameti od besede "popolnoma". Matematiki delujejo kot navadni trenerji in nam pridigajo svoje absurdne ideje.

Nekoč so bili inženirji, ki so gradili most, v čolnu pod mostom, medtem ko so preizkušali most. Če se je most zrušil, je povprečen inženir umrl pod ruševinami svoje stvaritve. Če je most zdržal obremenitev, je nadarjeni inženir zgradil druge mostove.

Ne glede na to, kako se matematiki skrivajo za besedno zvezo »pozor, jaz sem v hiši« ali bolje rečeno »matematika preučuje abstraktne pojme«, obstaja ena popkovina, ki jih neločljivo povezuje z realnostjo. Ta popkovina je denar. Uporabimo matematično teorijo množic za same matematike.

Zelo dobro smo se učili matematiko in zdaj sedimo za blagajno in delimo plače. Matematik torej pride k nam po svoj denar. Celoten znesek mu preštejemo in ga razporedimo po svoji mizi v različne kupčke, v katere damo bankovce enakih vrednosti. Nato iz vsakega kupa vzamemo po en račun in damo matematiku njegov »matematični nabor plače«. Pojasnimo matematiku, da bo preostale račune prejel šele, ko bo dokazal, da množica brez enakih elementov ni enaka množici z enakimi elementi. Tu se začne zabava.

Najprej bo delovala logika poslancev: "To lahko velja za druge, zame pa ne!" Potem nas bodo začeli prepričevati, da imajo bankovci istega apoena različne številke bankovcev, kar pomeni, da jih ni mogoče šteti za iste elemente. V redu, preštejmo plače v kovancih - na kovancih ni številk. Tu se bo matematik začel mrzlično spominjati fizike: različni kovanci imajo različno količino umazanije, kristalna struktura in razporeditev atomov je edinstvena za vsak kovanec ...

In zdaj imam najbolj zanimivo vprašanje: kje je črta, za katero se elementi množice spreminjajo v elemente množice in obratno? Takšna linija ne obstaja – o vsem odločajo šamani, znanost tu niti približno ne laže.

Poglej tukaj. Izberemo nogometne stadione z enako površino igrišča. Območja polj so enaka – kar pomeni, da imamo multimnožico. Če pa pogledamo imena teh istih stadionov, jih dobimo veliko, saj so imena različna. Kot lahko vidite, je ista množica elementov hkrati množica in multimnožica. Katera je pravilna? In tu matematik-šaman-oštar potegne iz rokava asa adutov in nam začne pripovedovati ali o množici ali multimnožici. V vsakem primeru nas bo prepričal, da ima prav.

Da bi razumeli, kako sodobni šamani operirajo s teorijo množic in jo povezujejo z realnostjo, je dovolj odgovoriti na eno vprašanje: kako se elementi enega sklopa razlikujejo od elementov drugega? Pokazal vam bom, brez kakršnih koli "predstavljivo kot enotna celota" ali "ni predstavljivo kot ena sama celota."

Nedelja, 18. marec 2018

Vsota števk števila je ples šamanov s tamburinom, ki nima nobene zveze z matematiko. Da, pri pouku matematike nas učijo najti vsoto števk števila in jo uporabiti, a zato so šamani, da svoje potomce učijo svojih veščin in modrosti, sicer bodo šamani preprosto izumrli.

Potrebujete dokaz? Odprite Wikipedijo in poskusite najti stran "Vsota števk števila." Ona ne obstaja. V matematiki ni formule, s katero bi lahko našli vsoto števk katerega koli števila. Navsezadnje so številke grafični znaki, s katerimi pišemo števila, v matematičnem jeziku pa naloga zveni takole: »Poišči vsoto grafičnih znakov, ki predstavljajo poljubno število.« Matematiki tega problema ne morejo rešiti, šamani pa to z lahkoto.

Ugotovimo, kaj in kako naredimo, da bi našli vsoto števk danega števila. In tako imamo številko 12345. Kaj je treba storiti, da bi našli vsoto števk tega števila? Razmislimo o vseh korakih po vrstnem redu.

1. Zapišite številko na list papirja. Kaj smo storili? Število smo pretvorili v grafični številski simbol. To ni matematična operacija.

2. Eno nastalo sliko razrežemo na več slik, ki vsebujejo posamezne številke. Rezanje slike ni matematična operacija.

3. Posamezne grafične znake pretvorite v številke. To ni matematična operacija.

4. Seštej dobljena števila. Zdaj je to matematika.

Vsota števk števila 12345 je 15. To so »tečaji krojenja in šivanja«, ki jih poučujejo šamani, uporabljajo pa jih matematiki. A to še ni vse.

Z matematičnega vidika ni vseeno, v katerem številskem sistemu zapišemo število. Torej bo v različnih številskih sistemih vsota števk istega števila različna. V matematiki je številski sistem označen kot indeks na desni strani števila. Z velikim številom 12345 si ne želim delati glave, razmislimo o številki 26 iz članka o. Zapišimo to število v dvojiškem, osmiškem, decimalnem in šestnajstiškem številskem sistemu. Vsakega koraka ne bomo gledali pod mikroskopom; to smo že storili. Poglejmo rezultat.

Kot lahko vidite, je v različnih številskih sistemih vsota števk istega števila različna. Ta rezultat nima nobene zveze z matematiko. To je enako, kot če bi določili površino pravokotnika v metrih in centimetrih, bi dobili popolnoma drugačne rezultate.

Ničla je videti enako v vseh številskih sistemih in nima vsote števk. To je še en argument v prid dejstvu, da. Vprašanje za matematike: kako se v matematiki označi nekaj, kar ni številka? Kaj, za matematike ne obstaja nič razen številk? Šamanom to lahko dovolim, znanstvenikom pa ne. Realnost niso samo številke.

Dobljeni rezultat je treba obravnavati kot dokaz, da so številski sistemi merske enote za števila. Navsezadnje ne moremo primerjati števil z različnimi merskimi enotami. Če enaka dejanja z različnimi merskimi enotami iste količine po primerjavi privedejo do različnih rezultatov, potem to nima nobene zveze z matematiko.

Kaj je prava matematika? To je takrat, ko rezultat matematične operacije ni odvisen od velikosti števila, uporabljene merske enote in od tega, kdo to dejanje izvaja.

Znak na vratih Odpre vrata in reče:

Oh! Ali ni to žensko stranišče?
- Mlada ženska! To je laboratorij za preučevanje nedefilske svetosti duš med njihovim vnebovzetjem v nebesa! Halo na vrhu in puščica navzgor. Kakšno drugo stranišče?

Ženska... Avreol na vrhu in puščica navzdol sta moški.

Če se vam takšno umetniško delo večkrat na dan zasveti pred očmi,

Potem ni presenetljivo, da nenadoma najdete čudno ikono v svojem avtomobilu:

Osebno se trudim, da pri kakajočem človeku vidim minus štiri stopinje (ena slika) (kompozicija večih slik: znak minus, številka štiri, oznaka stopinj). In mislim, da to dekle ni bedak, ki ne pozna fizike. Samo ima močan stereotip dojemanja grafičnih podob. In tega nas matematiki ves čas učijo. Tukaj je primer.

1A ni "minus štiri stopinje" ali "en a". To je "človek, ki se pokaka" ali številka "šestindvajset" v šestnajstiškem zapisu. Tisti ljudje, ki nenehno delajo v tem sistemu številk, samodejno zaznajo številko in črko kot en grafični simbol.

Druga operacija, ki jo lahko izvedemo z navadnimi ulomki, je množenje. Poskušali bomo razložiti njegova osnovna pravila pri reševanju nalog, pokazati, kako množimo navadni ulomek z naravnim številom in kako pravilno množimo tri navadne ulomke ali več.

Najprej zapišimo osnovno pravilo:

Definicija 1

Če pomnožimo en navaden ulomek, bo števec dobljenega ulomka enak zmnožku števcev prvotnih ulomkov, imenovalec pa zmnožku njihovih imenovalcev. V dobesedni obliki je za dva ulomka a / b in c / d to mogoče izraziti kot a b · c d = a · c b · d.

Oglejmo si primer, kako pravilno uporabiti to pravilo. Recimo, da imamo kvadrat, katerega stranica je enaka eni numerični enoti. Potem bo površina figure 1 kvadrat. enota. Če kvadrat razdelimo na enake pravokotnike s stranicami enakimi 1 4 in 1 8 številskimi enotami, dobimo, da je sedaj sestavljen iz 32 pravokotnikov (ker je 8 4 = 32). V skladu s tem bo površina vsakega od njih enaka 1 32 površine celotne figure, tj. 1 32 kvadratnih metrov enote.

Imamo osenčen fragment s stranicami, ki so enake 5 8 številskim enotam in 3 4 številskim enotam. Če želite izračunati njegovo površino, morate prvi ulomek pomnožiti z drugim. To bo enako 5 8 · 3 4 kvadratnih metrov. enote. Lahko pa preprosto preštejemo, koliko pravokotnikov je vključenih v fragment: 15 jih je, kar pomeni, da je skupna površina 15 32 kvadratnih enot.

Ker je 5 3 = 15 in 8 4 = 32, lahko zapišemo naslednjo enakost:

5 8 3 4 = 5 3 8 4 = 15 32

Potrjuje pravilo, ki smo ga oblikovali za množenje navadnih ulomkov, ki je izraženo kot a b · c d = a · c b · d. Deluje enako za prave in neprave ulomke; Uporablja se lahko za množenje ulomkov z različnimi in enakimi imenovalci.

Oglejmo si rešitve več problemov, ki vključujejo množenje navadnih ulomkov.

Primer 1

Pomnožite 7 11 z 9 8.

rešitev

Najprej izračunajmo produkt števcev navedenih ulomkov tako, da pomnožimo 7 z 9. Imamo 63. Nato izračunamo zmnožek imenovalcev in dobimo: 11 · 8 = 88. Sestavimo dve števili in odgovor je: 63 88.

Celotno rešitev lahko zapišemo takole:

7 11 9 8 = 7 9 11 8 = 63 88

odgovor: 7 11 · 9 8 = 63 88.

Če v odgovoru dobimo zmanjšljiv ulomek, moramo dokončati izračun in izvesti njegovo zmanjševanje. Če dobimo nepravilen ulomek, moramo iz njega izločiti cel del.

Primer 2

Izračunajte zmnožek ulomkov 4 15 in 55 6 .

rešitev

V skladu z zgoraj preučenim pravilom moramo števec pomnožiti s števcem in imenovalec z imenovalcem. Zapis rešitve bo videti takole:

4 15 55 6 = 4 55 15 6 = 220 90

Dobili smo zmanjšljivi ulomek, tj. ki je deljivo z 10.

Zmanjšajmo ulomek: 220 90 gcd (220, 90) = 10, 220 90 = 220 : 10 90 : 10 = 22 9. Kot rezultat smo dobili nepravilni ulomek, iz katerega izberemo cel del in dobimo mešano število: 22 9 = 2 4 9.

odgovor: 4 15 55 6 = 2 4 9.

Za lažje računanje lahko izvirne ulomke pred izvedbo operacije množenja tudi skrčimo, za kar moramo ulomek reducirati na obliko a · c b · d. Razčlenimo vrednosti spremenljivk na preproste faktorje in zmanjšamo iste.

Razložimo, kako je to videti z uporabo podatkov iz določene naloge.

Primer 3

Izračunaj zmnožek 4 ​​15 55 6.

rešitev

Zapišimo račune po pravilu množenja. Dobili bomo:

4 15 55 6 = 4 55 15 6

Ker je 4 = 2 2, 55 = 5 11, 15 = 3 5 in 6 = 2 3, potem je 4 55 15 6 = 2 2 5 11 3 5 2 3.

2 11 3 3 = 22 9 = 2 4 9

Odgovori: 4 15 · 55 6 = 2 4 9 .

Številski izraz, v katerem se množijo navadni ulomki, ima lastnost komutativnosti, to pomeni, da lahko po potrebi spremenimo vrstni red faktorjev:

a b · c d = c d · a b = a · c b · d

Kako pomnožiti ulomek z naravnim številom

Takoj zapišimo osnovno pravilo, nato pa ga poskusimo razložiti v praksi.

Definicija 2

Če želite navadni ulomek pomnožiti z naravnim številom, morate števec tega ulomka pomnožiti s tem številom. V tem primeru bo imenovalec končnega ulomka enak imenovalcu prvotnega navadnega ulomka. Množenje določenega ulomka a b z naravnim številom n lahko zapišemo kot formulo a b · n = a · n b.

To formulo je enostavno razumeti, če se spomnite, da je vsako naravno število mogoče predstaviti kot navaden ulomek z imenovalcem enakim ena, to je:

a b · n = a b · n 1 = a · n b · 1 = a · n b

Razložimo našo idejo s konkretnimi primeri.

Primer 4

Izračunaj produkt 2 27 krat 5.

rešitev

Kot rezultat množenja števca prvotnega ulomka z drugim faktorjem dobimo 10. Na podlagi zgoraj navedenega pravila bomo kot rezultat dobili 10 27. Celotna rešitev je podana v tej objavi:

2 27 5 = 2 5 27 = 10 27

odgovor: 2 27 5 = 10 27

Ko naravno število množimo z ulomkom, moramo rezultat pogosto skrajšati ali pa ga predstaviti kot mešano število.

Primer 5

Pogoj: izračunajte zmnožek 8 krat 5 12.

rešitev

Po zgornjem pravilu pomnožimo naravno število s števcem. Kot rezultat dobimo, da je 5 12 8 = 5 8 12 = 40 12. Končni ulomek ima znake deljivosti z 2, zato ga moramo zmanjšati:

LCM (40, 12) = 4, torej 40 12 = 40: 4 12: 4 = 10 3

Sedaj moramo le še izbrati cel del in zapisati pripravljen odgovor: 10 3 = 3 1 3.

V tem vnosu si lahko ogledate celotno rešitev: 5 12 8 = 5 8 12 = 40 12 = 10 3 = 3 1 3.

Ulomek bi lahko tudi zmanjšali tako, da bi števec in imenovalec faktorizirali na prafaktorje in rezultat bi bil popolnoma enak.

odgovor: 5 12 8 = 3 1 3.

Tudi številski izraz, v katerem je naravno število pomnoženo z ulomkom, ima lastnost premika, to pomeni, da vrstni red faktorjev ne vpliva na rezultat:

a b · n = n · a b = a · n b

Kako pomnožiti tri ali več navadnih ulomkov

Na dejanje množenja navadnih ulomkov lahko razširimo iste lastnosti, ki so značilne za množenje naravnih števil. To izhaja iz same definicije teh pojmov.

Zahvaljujoč poznavanju kombiniranih in komutativnih lastnosti lahko pomnožite tri ali več navadnih ulomkov. Sprejemljivo je preurediti faktorje za večjo priročnost ali razporediti oklepaje na način, ki olajša štetje.

Pokažimo s primerom, kako se to naredi.

Primer 6

Pomnožite štiri navadne ulomke 1 20, 12 5, 3 7 in 5 8.

Rešitev: Najprej posnemimo delo. Dobimo 1 20 · 12 5 · 3 7 · 5 8 . Vse števce in vse imenovalce moramo pomnožiti skupaj: 1 20 · 12 5 · 3 7 · 5 8 = 1 · 12 · 3 · 5 20 · 5 · 7 · 8 .

Preden začnemo z množenjem, si lahko nekoliko olajšamo stvari in nekatera števila razdelimo na prafaktorje za nadaljnje zmanjševanje. To bo lažje kot zmanjšati nastalo frakcijo, ki je že pripravljena.

1 12 3 5 20 5 7 8 = 1 (2 2 3) 3 5 2 2 5 5 7 (2 2 2) = 3 3 5 7 2 2 2 = 9.280

odgovor: 1 · 12 · 3 · 5 20 · 5 · 7 · 8 = 9.280.

Primer 7

Pomnoži 5 števil 7 8 · 12 · 8 · 5 36 · 10 .

rešitev

Zaradi udobja lahko ulomek 7 8 združimo s številko 8, število 12 pa z ulomkom 5 36, saj nam bodo prihodnje okrajšave očitne. Kot rezultat bomo dobili:
7 8 12 8 5 36 10 = 7 8 8 12 5 36 10 = 7 8 8 12 5 36 10 = 7 1 2 2 3 5 2 2 3 3 10 = 7 5 3 10 = 7 5 10 3 = 350 3 = 116 2 3

odgovor: 7 8 12 8 5 36 10 = 116 2 3.

Če v besedilu opazite napako, jo označite in pritisnite Ctrl+Enter

Vsebina lekcije

Seštevanje ulomkov z enakimi imenovalci

Obstajata dve vrsti seštevanja ulomkov:

  1. Seštevanje ulomkov z enakimi imenovalci
  2. Seštevanje ulomkov z različnimi imenovalci

Najprej se naučimo seštevanja ulomkov z enakimi imenovalci. Tukaj je vse preprosto. Če želite sešteti ulomke z enakimi imenovalci, morate njihove števce sešteti, imenovalec pa pustiti nespremenjen. Na primer, seštejmo ulomke in . Seštejte števce in pustite imenovalec nespremenjen:

Ta primer zlahka razumemo, če se spomnimo pice, ki je razdeljena na štiri dele. Če dodate pico k pici, dobite pico:

Primer 2. Seštejte ulomke in.

Izkazalo se je, da je odgovor nepravilen ulomek. Ko pride naloga do konca, je običajno, da se znebimo nepravilnih ulomkov. Če se želite znebiti nepravilnega ulomka, morate izbrati njegov cel del. V našem primeru je celoten del enostavno izoliran - dva deljeno z dva je enako ena:

Ta primer je zlahka razumljiv, če se spomnimo pice, ki je razdeljena na dva dela. Če pici dodate še pico, dobite eno celo pico:

Primer 3. Seštejte ulomke in.

Spet seštejemo števce in pustimo imenovalec nespremenjen:

Ta primer zlahka razumemo, če se spomnimo pice, ki je razdeljena na tri dele. Če pici dodate več pice, dobite pico:

Primer 4. Poiščite vrednost izraza

Ta primer je rešen na popolnoma enak način kot prejšnji. Števce je treba sešteti, imenovalec pa pustiti nespremenjen:

Poskusimo našo rešitev prikazati z risbo. Če dodate pico k pici in dodate še več pic, dobite 1 celo pico in več pic.

Kot lahko vidite, pri seštevanju ulomkov z enakimi imenovalci ni nič zapletenega. Dovolj je razumeti naslednja pravila:

  1. Če želite dodati ulomke z enakim imenovalcem, morate sešteti njihove števce in pustiti imenovalec nespremenjen;

Seštevanje ulomkov z različnimi imenovalci

Zdaj pa se naučimo seštevati ulomke z različnimi imenovalci. Pri seštevanju ulomkov morata biti imenovalca ulomkov enaka. Niso pa vedno enaki.

Na primer, ulomke je mogoče sešteti, ker imajo enake imenovalce.

Toda ulomkov ni mogoče takoj sešteti, saj imajo ti ulomki različne imenovalce. V takih primerih je treba ulomke zreducirati na isti (skupni) imenovalec.

Obstaja več načinov za zmanjšanje ulomkov na isti imenovalec. Danes si bomo ogledali samo enega od njih, saj se lahko druge metode začetniku zdijo zapletene.

Bistvo te metode je, da se najprej poišče LCM imenovalcev obeh ulomkov. LCM se nato deli z imenovalcem prvega ulomka, da dobimo prvi dodatni faktor. Enako storijo z drugim ulomkom - LCM se deli z imenovalcem drugega ulomka in dobi se drugi dodatni faktor.

Števci in imenovalci ulomkov se nato pomnožijo z njihovimi dodatnimi faktorji. Zaradi teh dejanj se ulomki, ki so imeli različne imenovalce, spremenijo v ulomke z enakimi imenovalci. In takšne ulomke že znamo seštevati.

Primer 1. Seštejmo ulomke in

Najprej poiščemo najmanjši skupni večkratnik imenovalcev obeh ulomkov. Imenovalec prvega ulomka je število 3, imenovalec drugega ulomka pa število 2. Najmanjši skupni večkratnik teh števil je 6

LCM (2 in 3) = 6

Zdaj pa se vrnimo k ulomkom in . Najprej LCM delite z imenovalcem prvega ulomka in dobite prvi dodatni faktor. LCM je število 6, imenovalec prvega ulomka pa je število 3. 6 delimo s 3, dobimo 2.

Dobljeno število 2 je prvi dodatni množitelj. Zapišemo ga do prvega ulomka. Če želite to narediti, naredite majhno poševno črto čez ulomek in zapišite dodatni faktor, ki ga najdete nad njim:

Enako storimo z drugim ulomkom. LCM delimo z imenovalcem drugega ulomka in dobimo drugi dodatni faktor. LCM je število 6, imenovalec drugega ulomka pa je število 2. 6 delimo z 2, dobimo 3.

Dobljeno število 3 je drugi dodatni množitelj. Zapišemo ga na drugi ulomek. Spet naredimo majhno poševno črto nad drugim ulomkom in zapišemo dodatni faktor, ki ga najdemo nad njim:

Zdaj imamo vse pripravljeno za dodajanje. Ostaja še pomnožiti števce in imenovalce ulomkov z njihovimi dodatnimi faktorji:

Poglejte dobro, do česa smo prišli. Prišli smo do zaključka, da so se ulomki, ki so imeli različne imenovalce, spremenili v ulomke z enakimi imenovalci. In takšne ulomke že znamo seštevati. Vzemimo ta primer do konca:

S tem je primer zaključen. Izkazalo se je dodati.

Poskusimo našo rešitev prikazati z risbo. Če pici dodaš pico, dobiš eno celo pico in še eno šestino pice:

Zmanjševanje ulomkov na isti (skupni) imenovalec lahko prikažemo tudi s sliko. Z zmanjšanjem ulomkov in na skupni imenovalec smo dobili ulomke in . Ti dve frakciji bosta predstavljali enaki kosi pice. Razlika bo le v tem, da bodo tokrat razdeljeni na enake deleže (zreducirani na isti imenovalec).

Prva risba predstavlja ulomek (štirje kosi od šestih), druga risba pa ulomek (trije kosi od šestih). Če seštejemo te kose, dobimo (sedem kosov od šestih). Ta ulomek je nepravilen, zato smo izpostavili njegov cel del. Kot rezultat smo dobili (eno celo pico in še šesto pico).

Upoštevajte, da smo ta primer opisali preveč podrobno. V izobraževalnih ustanovah ni običajno pisati tako podrobno. Morate biti sposobni hitro najti LCM obeh imenovalcev in dodatnih faktorjev k njim, pa tudi hitro pomnožiti najdene dodatne faktorje s števci in imenovalci. Če bi bili v šoli, bi morali ta primer napisati takole:

Obstaja pa tudi druga plat medalje. Če si na prvih stopnjah študija matematike ne delate podrobnih zapiskov, se začnejo pojavljati tovrstna vprašanja. »Od kod ta številka?«, »Zakaj se ulomki nenadoma spremenijo v povsem druge ulomke? «.

Za lažje seštevanje ulomkov z različnimi imenovalci lahko uporabite naslednja navodila po korakih:

  1. Poiščite LCM imenovalcev ulomkov;
  2. LCM razdelite na imenovalec vsakega ulomka in dobite dodatni faktor za vsak ulomek;
  3. Pomnožite števce in imenovalce ulomkov z njihovimi dodatnimi faktorji;
  4. Seštejte ulomke, ki imajo enake imenovalce;
  5. Če se izkaže, da je odgovor nepravilen ulomek, izberite njegov cel del;

Primer 2. Poiščite vrednost izraza .

Uporabimo zgoraj navedena navodila.

Korak 1. Poiščite LCM imenovalcev ulomkov

Poiščite LCM imenovalcev obeh ulomkov. Imenovalec ulomkov so števila 2, 3 in 4

2. korak. Delite LCM z imenovalcem vsakega ulomka in dobite dodatni faktor za vsak ulomek

LCM delite z imenovalcem prvega ulomka. LCM je število 12, imenovalec prvega ulomka pa je število 2. 12 delimo z 2, dobimo 6. Dobili smo prvi dodatni faktor 6. Zapišemo ga nad prvi ulomek:

Zdaj LCM delimo z imenovalcem drugega ulomka. LCM je število 12, imenovalec drugega ulomka pa je število 3. 12 delimo s 3, dobimo 4. Dobimo drugi dodatni faktor 4. Zapišemo ga nad drugim ulomkom:

Zdaj LCM delimo z imenovalcem tretjega ulomka. LCM je število 12, imenovalec tretjega ulomka pa je število 4. 12 delimo s 4, dobimo 3. Dobimo tretji dodatni faktor 3. Zapišemo ga nad tretjim ulomkom:

Korak 3. Pomnožite števce in imenovalce ulomkov z njihovimi dodatnimi faktorji

Števce in imenovalce pomnožimo z njihovimi dodatnimi faktorji:

Korak 4. Dodajte ulomke z enakimi imenovalci

Prišli smo do zaključka, da so se ulomki, ki so imeli različne imenovalce, spremenili v ulomke z enakimi (skupnimi) imenovalci. Vse kar ostane je, da te ulomke seštejemo. Dodajte:

Dodatek ni sodil v eno vrstico, zato smo preostali izraz premaknili v naslednjo vrstico. To je v matematiki dovoljeno. Ko izraz ne sodi v eno vrstico, se premakne v naslednjo vrstico, na koncu prve vrstice in na začetku nove vrstice pa je treba postaviti enačaj (=). Znak enačaja v drugi vrstici pomeni, da je to nadaljevanje izraza, ki je bil v prvi vrstici.

Korak 5. Če se izkaže, da je odgovor nepravilen ulomek, izberite njegov cel del

Izkazalo se je, da je naš odgovor nepravilen ulomek. Izpostaviti moramo cel del tega. Izpostavljamo:

Dobili smo odgovor

Odštevanje ulomkov z enakimi imenovalci

Obstajata dve vrsti odštevanja ulomkov:

  1. Odštevanje ulomkov z enakimi imenovalci
  2. Odštevanje ulomkov z različnimi imenovalci

Najprej se naučimo odštevati ulomke z enakimi imenovalci. Tukaj je vse preprosto. Če želite od enega ulomka odšteti drugega, morate števec drugega ulomka odšteti od števca prvega ulomka, imenovalec pa pustiti enak.

Na primer, poiščimo vrednost izraza. Če želite rešiti ta primer, morate števec drugega ulomka odšteti od števca prvega ulomka in pustiti imenovalec nespremenjen. Naredimo to:

Ta primer zlahka razumemo, če se spomnimo pice, ki je razdeljena na štiri dele. Če iz pice izrežete pice, dobite pice:

Primer 2. Poiščite vrednost izraza.

Spet od števca prvega ulomka odštejemo števec drugega ulomka in pustimo imenovalec nespremenjen:

Ta primer zlahka razumemo, če se spomnimo pice, ki je razdeljena na tri dele. Če iz pice izrežete pice, dobite pice:

Primer 3. Poiščite vrednost izraza

Ta primer je rešen na popolnoma enak način kot prejšnji. Od števca prvega ulomka morate odšteti števce preostalih ulomkov:

Kot lahko vidite, pri odštevanju ulomkov z enakimi imenovalci ni nič zapletenega. Dovolj je razumeti naslednja pravila:

  1. Če želite od enega ulomka odšteti drugega, morate števec drugega ulomka odšteti od števca prvega ulomka in pustiti imenovalec nespremenjen;
  2. Če se izkaže, da je odgovor nepravilen ulomek, morate poudariti njegov cel del.

Odštevanje ulomkov z različnimi imenovalci

Od ulomka lahko na primer odštejete ulomek, ker imata ulomka enake imenovalce. Toda ulomka ne morete odšteti od ulomka, saj imajo ti ulomki različne imenovalce. V takih primerih je treba ulomke zreducirati na isti (skupni) imenovalec.

Skupni imenovalec najdemo po istem principu, kot smo ga uporabili pri seštevanju ulomkov z različnimi imenovalci. Najprej poiščite LCM imenovalcev obeh ulomkov. Nato LCM delimo z imenovalcem prvega ulomka in dobimo prvi dodatni faktor, ki je zapisan nad prvim ulomkom. Podobno LCM delimo z imenovalcem drugega ulomka in dobimo drugi dodatni faktor, ki je zapisan nad drugim ulomkom.

Ulomki se nato pomnožijo z dodatnimi faktorji. Kot rezultat teh operacij se ulomki z različnimi imenovalci pretvorijo v ulomke z enakimi imenovalci. In takšne ulomke že znamo odšteti.

Primer 1. Poiščite pomen izraza:

Ti ulomki imajo različne imenovalce, zato jih morate zreducirati na isti (skupni) imenovalec.

Najprej poiščemo LCM imenovalcev obeh ulomkov. Imenovalec prvega ulomka je število 3, imenovalec drugega ulomka pa število 4. Najmanjši skupni večkratnik teh števil je 12

LCM (3 in 4) = 12

Zdaj pa se vrnimo k ulomkom in

Poiščimo dodatni faktor za prvi ulomek. To naredite tako, da LCM delite z imenovalcem prvega ulomka. LCM je število 12, imenovalec prvega ulomka pa je število 3. 12 delimo s 3, dobimo 4. Nad prvim ulomkom napiši štirico:

Enako storimo z drugim ulomkom. LCM delite z imenovalcem drugega ulomka. LCM je število 12, imenovalec drugega ulomka pa je število 4. 12 delimo s 4, dobimo 3. Čez drugi ulomek napišemo trojko:

Zdaj smo pripravljeni na odštevanje. Ostaja še pomnožiti ulomke z njihovimi dodatnimi faktorji:

Prišli smo do zaključka, da so se ulomki, ki so imeli različne imenovalce, spremenili v ulomke z enakimi imenovalci. In takšne ulomke že znamo odšteti. Vzemimo ta primer do konca:

Dobili smo odgovor

Poskusimo našo rešitev prikazati z risbo. Če iz pice odrežete pico, dobite pico

To je podrobna različica rešitve. Če bi bili v šoli, bi morali ta primer reševati krajše. Takšna rešitev bi izgledala takole:

Zmanjševanje ulomkov na skupni imenovalec lahko prikažemo tudi s sliko. Z zmanjšanjem teh ulomkov na skupni imenovalec smo dobili ulomke in . Ti ulomki bodo predstavljeni z enakimi rezinami pice, vendar bodo tokrat razdeljeni na enake deleže (zmanjšane na isti imenovalec):

Na prvi sliki je ulomek (osem kosov od dvanajstih), na drugi sliki pa ulomek (trije koščki od dvanajstih). Če iz osmih kosov izrežemo tri, dobimo od dvanajstih pet kosov. Ulomek opisuje teh pet kosov.

Primer 2. Poiščite vrednost izraza

Ti ulomki imajo različne imenovalce, zato jih morate najprej reducirati na isti (skupni) imenovalec.

Poiščimo LCM imenovalcev teh ulomkov.

Imenovalec ulomkov so števila 10, 3 in 5. Najmanjši skupni večkratnik teh števil je 30

LCM(10, 3, 5) = 30

Zdaj najdemo dodatne faktorje za vsak ulomek. To naredite tako, da LCM razdelite na imenovalec vsakega ulomka.

Poiščimo dodatni faktor za prvi ulomek. LCM je število 30, imenovalec prvega ulomka pa je število 10. Če 30 delimo z 10, dobimo prvi dodatni faktor 3. Zapišemo ga nad prvi ulomek:

Zdaj najdemo dodatni faktor za drugi ulomek. LCM delite z imenovalcem drugega ulomka. LCM je število 30, imenovalec drugega ulomka pa je število 3. Če 30 delimo s 3, dobimo drugi dodatni faktor 10. Zapišemo ga nad drugim ulomkom:

Zdaj najdemo dodatni faktor za tretji ulomek. LCM delite z imenovalcem tretjega ulomka. LCM je število 30, imenovalec tretjega ulomka pa je število 5. 30 delimo s 5, dobimo tretji dodatni faktor 6. Zapišemo ga nad tretjim ulomkom:

Zdaj je vse pripravljeno za odštevanje. Ostaja še pomnožiti ulomke z njihovimi dodatnimi faktorji:

Prišli smo do zaključka, da so se ulomki, ki so imeli različne imenovalce, spremenili v ulomke z enakimi (skupnimi) imenovalci. In takšne ulomke že znamo odšteti. Končajmo ta primer.

Nadaljevanje primera ne bo šlo v eno vrstico, zato nadaljevanje premaknemo v naslednjo vrstico. Ne pozabite na enačaj (=) v novi vrstici:

Izkazalo se je, da je odgovor navaden ulomek in zdi se, da nam vse ustreza, vendar je preveč okoren in grd. Morali bi ga poenostaviti. Kaj se lahko naredi? Ta ulomek lahko skrajšate.

Če želite skrajšati ulomek, morate njegov števec in imenovalec deliti z (NOT) števil 20 in 30.

Torej, najdemo gcd številk 20 in 30:

Zdaj se vrnemo k našemu primeru in delimo števec in imenovalec ulomka z najdenim gcd, to je z 10

Dobili smo odgovor

Množenje ulomka s številom

Če želite pomnožiti ulomek s številom, morate števec danega ulomka pomnožiti s tem številom in pustiti imenovalec enak.

Primer 1. Pomnoži ulomek s številom 1.

Števec ulomka pomnožite s številom 1

Posnetek je mogoče razumeti, kot da traja polovico 1 časa. Na primer, če enkrat vzamete pico, jo dobite

Iz zakonov množenja vemo, da se zmnožek ne spremeni, če zamenjata množitelj in faktor. Če je izraz zapisan kot , bo produkt še vedno enak . Spet velja pravilo za množenje celega števila in ulomka:

Ta zapis lahko razumemo kot polovico enega. Na primer, če je 1 cela pica in jo vzamemo polovico, potem bomo imeli pico:

Primer 2. Poiščite vrednost izraza

Pomnožite števec ulomka s 4

Odgovor je bil nepravilen ulomek. Naj izpostavimo celoten del:

Izraz lahko razumemo tako, da vzamemo dve četrtini 4-krat. Na primer, če vzamete 4 pice, boste dobili dve celi pici

In če zamenjamo množitelj in množitelj, dobimo izraz . Prav tako bo enako 2. Ta izraz lahko razumemo kot vzeti dve pici iz štirih celih pic:

Množenje ulomkov

Če želite pomnožiti ulomke, morate pomnožiti njihove števce in imenovalce. Če se izkaže, da je odgovor nepravilen ulomek, morate poudariti njegov cel del.

Primer 1. Poiščite vrednost izraza.

Dobili smo odgovor. Ta delež je priporočljivo zmanjšati. Ulomek lahko zmanjšamo za 2. Potem bo končna rešitev imela naslednjo obliko:

Izraz lahko razumemo kot vzeti pico iz polovice pice. Recimo, da imamo pol pice:

Kako od te polovice vzeti dve tretjini? Najprej morate to polovico razdeliti na tri enake dele:

In vzemite dva od teh treh kosov:

Naredili bomo pico. Spomnite se, kako izgleda pica, če jo razdelite na tri dele:

En kos te pice in dva kosa, ki sva jih vzela, bodo imeli enake dimenzije:

Z drugimi besedami, govorimo o enako veliki pici. Zato je vrednost izraza

Primer 2. Poiščite vrednost izraza

Pomnožite števec prvega ulomka s števcem drugega ulomka in imenovalec prvega ulomka z imenovalcem drugega ulomka:

Odgovor je bil nepravilen ulomek. Naj izpostavimo celoten del:

Primer 3. Poiščite vrednost izraza

Pomnožite števec prvega ulomka s števcem drugega ulomka in imenovalec prvega ulomka z imenovalcem drugega ulomka:

Izkazalo se je, da je odgovor navadni ulomek, vendar bi bilo dobro, če bi ga skrajšali. Če želite zmanjšati ta ulomek, morate števec in imenovalec tega ulomka deliti z največjim skupnim deliteljem (GCD) števil 105 in 450.

Torej, poiščimo gcd števil 105 in 450:

Zdaj delimo števec in imenovalec našega odgovora z gcd, ki smo ga zdaj našli, to je s 15

Predstavitev celega števila kot ulomka

Vsako celo število je mogoče predstaviti kot ulomek. Na primer, številko 5 lahko predstavimo kot. To ne bo spremenilo pomena pet, saj izraz pomeni "število pet deljeno z ena", in to je, kot vemo, enako pet:

Vzajemna števila

Sedaj se bomo seznanili z zelo zanimivo temo matematike. Imenuje se "obratne številke".

Opredelitev. Obrnite na številkoa je število, ki ga pomnožimo sa daje eno.

V tej definiciji zamenjajmo namesto spremenljivke aštevilko 5 in poskusite prebrati definicijo:

Obrnite na številko 5 je število, ki ga pomnožimo s 5 daje eno.

Ali je mogoče najti število, ki, če ga pomnožimo s 5, da ena? Izkazalo se je, da je to mogoče. Predstavljajmo si pet kot ulomek:

Nato pomnožite ta ulomek sam s seboj, samo zamenjajte števec in imenovalec. Z drugimi besedami, pomnožimo ulomek samega s seboj, samo na glavo:

Kaj se bo zgodilo zaradi tega? Če nadaljujemo z reševanjem tega primera, dobimo enega:

To pomeni, da je inverzno število 5 število , saj ko 5 pomnožite z, dobite ena.

Recipročno vrednost števila je mogoče najti tudi za katero koli drugo celo število.

Poiščete lahko tudi recipročno vrednost katerega koli drugega ulomka. Če želite to narediti, ga obrnite.

Deljenje ulomka s številom

Recimo, da imamo pol pice:

Razdelimo ga enakomerno na dva. Koliko pice bo dobil vsak?

Vidimo, da smo po razdelitvi pice na polovico dobili dva enaka kosa, od katerih vsak predstavlja pico. Tako vsak dobi pico.

Delitev ulomkov poteka z uporabo recipročnih vrednosti. Vzajemna števila vam omogočajo zamenjavo deljenja z množenjem.

Če želite deliti ulomek s številom, morate ulomek pomnožiti z obratno vrednostjo delitelja.

S pomočjo tega pravila bomo zapisali razdelitev naše polovice pice na dva dela.

Torej, ulomek morate razdeliti s številko 2. Tu je dividenda ulomek, delitelj pa število 2.

Če želite deliti ulomek s številom 2, morate ta ulomek pomnožiti z recipročno vrednostjo delitelja 2. Recipročna vrednost delitelja 2 je ulomek. Torej morate pomnožiti s